首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
蓝尾石龙子的头部两性异形和食性   总被引:10,自引:0,他引:10  
张永普  计翔 《动物学报》2004,50(5):745-752
通过测量头、体大小和胃检研究浙江泰顺产蓝尾石龙子 (Eumeceselegans)个体发育过程中两性异形和食性的变化。蓝尾石龙子成体个体大小和头部大小的两性差异显著 ,雄性大于雌性。不同发育阶段雌性头长与SVL的线性回归斜率无显著差异 ,头宽与SVL线性回归斜率的差异显著 ,成体和SVL <5 0mm幼体头宽随SVL的增长速率显著小于SVL为 5 0 - 6 9mm的幼体。雄性头部相对于SVL呈加速式异速生长。两性比较发现 :雌雄幼体头长和头宽随SVL的增长速率无显著差异 ,SVL <5 0mm幼体特定SVL的头长和头宽无显著的两性差异 ,但SVL为 5 0 - 6 9mm的雄性幼体头长和头宽大于SVL相同的雌性幼体 ;雄性成体头长和头宽随SVL的增长速率显著大于雌性。SVL <5 0mm的雌性幼体头部相对小于SVL为 5 0 - 6 9mm的同性幼体 ,性成熟雌体头部相对小于SVL为 5 0 - 6 9mm的同性幼体。雌性幼体、雄性幼体、雌性成体和雄性成体食物生态位宽度分别为 12 3、 12 5、 4 8和 14 4。雌雄幼体食物生态位重叠度最高 ,雌雄成体食物生态位重叠度次之 ,成体与幼体食物生态位重叠度较小。成体摄入食饵的大小 (用胃内完整食物长度的平均值表示 )和变化范围大于幼体。两性成、幼体摄入的食饵大小差异显著。两性个体摄入的食饵大小均与其SVL呈正相关 ,表明较大  相似文献   

2.
为了解蛇鮈雌雄间是否存在显著的外部形态差异及雌性个体生殖力情况, 在繁殖期对嘉陵江下游(合川江段)共76尾蛇鮈样本的两性异形、性比及雌性个体生殖力进行分析.结果表明: 嘉陵江下游蛇鮈繁殖群体的性比接近1∶1,且蛇鮈两性的体型大小相同,但局部特征(如头部和躯干部等)呈现出显著的两性异形,如成体雄性蛇鮈的头部、胸鳍和腹鳍均较雌性蛇鮈大,而躯干部的体宽、体高和躯干长则是雌性蛇鮈大于雄性蛇鮈,这可能是性选择长期作用的结果.主成分分析显示,前3个主成分的累积贡献率达75.2%,但雌雄个体间形态特征相互重叠,无法将两者截然分开;利用判别函数对蛇鮈性别进行回判,综合判别准确率为92.1%.蛇鮈雌性个体绝对生殖力在979~19979粒;且与体长和去内脏体质量均呈显著正相关.同历史资料相比,本研究中嘉陵江蛇鮈的生殖力增大显著,这可能是蛇鮈对种群资源量下降和水环境变化主动适应的结果.  相似文献   

3.
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes.  相似文献   

4.
《Zoology (Jena, Germany)》2015,118(4):248-254
Sexual dimorphism in shape and size is widespread across animal taxa and arises when natural or sexual selection operates differently on the sexes. Male and female common geckos (Woodworthia maculatus; formerly Hoplodactylus maculatus) in New Zealand do not appear to experience different viability selection pressure, nor do males appear to be under intense pre-copulatory sexual selection. It was therefore predicted that this species would be sexually monomorphic with regard to body size and the size and shape of the head. In line with the prediction, there was no sexual difference in head width, depth, or length or in lateral head shape. However, contrary to prediction, males had a larger body and lateral head size than females. This study suggests that males, at least on Maud Island, NZ, might be under stronger pre-copulatory sexual selection than previously recognized and thus have evolved larger heads (i.e. lateral head size) for use in male combat for females. Allometric scaling patterns do not differ between the sexes and suggest that head width and depth are under directional selection whereas lateral head size is under stabilizing selection. Diet ecology – an agent of natural selection common to both sexes – is likely largely responsible for the observed patterns of head size and shape and the lack of sexual dimorphism in them.  相似文献   

5.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

6.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

7.
The evolutionary origin of the long neck of giraffes is enigmatic. One theory (the 'sexual selection' theory) is that their shape evolved because males use their necks and heads to achieve sexual dominance. Support for this theory would be that males invest more in neck and head growth than do females. We have investigated this hypothesis in 17 male and 21 female giraffes with body masses ranging from juvenile to mature animals, by measuring head mass, neck mass, neck and leg length and the neck length to leg length ratio. We found no significant differences in any of these dimensions between males and females of the same mass, although mature males, whose body mass is significantly (50%) greater than that of mature females, do have significantly heavier (but not longer) necks and heavier heads than mature females. We conclude that morphological differences between males and females are minimal, that differences that do exist can be accounted for by the larger final mass of males and that sexual selection is not the origin of a long neck in giraffes.  相似文献   

8.
This study examined sexual dimorphism of head morphology in the ecologically diverse three‐spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size‐adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter‐population differences in head length were correlated between sexes, thus population‐level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter‐population variation and location of sexual dimorphism in G. aculeatus head morphology.  相似文献   

9.
The potential viability costs of sexually selected traits are central to hypotheses about the evolution of exaggerated traits. Estimates of these costs in nature can come from selection analyses using multiple components of fitness during the same time frame. For a population of tree crickets (Oecanthus nigricornis: Gryllidae), we analyzed viability and sexual selection on male traits by comparing Oecanthus prey of a solitary wasp to those that survived, and comparing mating individuals to solitary males. We measured forewing width (sexually size dimorphic and used for singing), head width, pronotum length, and size of hind jumping legs as potential targets of selection. Supporting the hypothesis that sexually selected traits have viability costs, we found that significant directional sexual selection for wider heads was opposed by significant viability selection for narrower heads. Nonlinear selection revealed that individuals with wide heads and small legs were most attractive, but individuals with narrow heads, large legs, and intermediate pronotum length were most likely to survive. Successful mating may put males at greater risk of predation, especially if copulation per se is risky. Such balancing selection in tree crickets may have constrained the evolution of sexual dimorphism in head size—a condition seen in other gryllids and orthopterans.  相似文献   

10.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

11.
奇台沙蜥生长过程中的两性异形   总被引:1,自引:0,他引:1  
研究奇台沙蜥Phrynocephalus grumgrzimailoi头、尾、腋胯距大小在个体发育过程中的变化.成体体长(SVL)无显著的两性差异,两性异形主要表现为雄性个体有较大的头部(头长和头宽)和尾部,雌性具有较大的腋胯距.头、尾、腋胯距大小的两性异形在幼体就已存在,并随个体发育的进行变得更加显著.不同年龄组两性个体头部、尾部、腋胯距随SVL呈异速增长,表现为两性头部的增长速率在个体发育过程中逐渐增大,尾部的增长速率逐渐减慢,腋胯距在雌性蜥蜴中增长速率逐渐增大,在雄性中逐渐变小.  相似文献   

12.
棒花鱼形态特征的两性异形和雌性个体生育力   总被引:6,自引:0,他引:6  
测定了棒花鱼(Abbottina rivularis)繁殖期形态特征包括体长、头长、头宽、头高、眼间距、鼻间距、背鳍基长、胸鳍长、胸鳍腹鳍间距、尾柄长、尾鳍长和体重的两性异形和雌性个体生育力。结果表明,雄性个体的数量显著多于雌性个体,雄性个体的体长显著大于雌性个体。特定体长的雌性个体的胸鳍腹鳍间距显著大于雄性个体,头长、头宽、头高、眼间距、鼻间距、背鳍基长、胸鳍长、尾柄长和尾鳍长显著小于雄性个体,雌雄两性体重不存在显著差异。棒花鱼的怀卵数量与体长和体重回归关系显著。偏相关分析显示,当控制第三者恒定时,怀卵数量与体长和体重呈正相关但不显著。棒花鱼存在个体大小和其他局部特征显著的两性异形,雌性个体主要通过腹腔容积的增加提高个体生育力。棒花鱼形态特征的两性异形是性选择和生育力选择共同作用的结果。  相似文献   

13.
本研究以黑眶蟾蜍(Duttaphrynus melanostictus)为研究对象,通过对比黑眶蟾蜍抱对个体的体长、头长、头宽、眼间距、鼓膜径、耳后腺长、眼径、前臂及手长、前肢长以及后肢长等形态特征,分析雌性黑眶蟾蜍繁殖输出与其体型的关系,探究黑眶蟾蜍两性异形模式及其与雌性生育力的关系;同时通过对配对个体形态学特征的相关性分析探究了黑眶蟾蜍的配对模式。结果表明,黑眶蟾蜍雌性体长和体重显著大于雄体;两性的所有局部形态特征均与体长成正相关;去除体长因素影响后,雄性头长以及后肢长均明显大于雌性,其余局部形态特征两性间则皆无显著差异。雌体的窝卵重、窝卵数均与其体长和体重成正相关关系。雌性成体的前肢长与抱对雄性成体的前肢长之间呈显著正相关,其余形态特征两性间均无相关性。研究表明,生育力选择是导致黑眶蟾蜍两性异形的重要驱动力;黑眶蟾蜍的选型配对模式未表现在个体大小上,而是体现在局部特征(前肢长),这不仅为揭示两栖类配对模式的普遍性提供了参考,还表明对两栖类选型配对的研究应以多个性状为对象。  相似文献   

14.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

15.
The Charadrii (shorebirds, gulls and alcids) are one of the most diverse avian groups from the point of view of sexual size dimorphism, exhibiting extremes in both male-biased and female-biased dimorphism, as well as monomorphism. In this study we use phylogenetic comparative analyses to investigate how size dimorphism has changed over evolutionary time, distinguishing between changes that have occurred in females and in males. Independent contrasts analyses show that both body mass and wing length have been more variable in males than in females. Directional analyses show that male-biased dimorphism has increased after inferred transitions towards more polygynous mating systems. There have been analogous increases in female-biased dimorphism after transitions towards more socially polyandrous mating systems. Changes in dimorphism in both directions are attributable to male body size changing more than female body size. We suggest that this might be because females are under stronger natural selection constraints related to fecundity. Taken together, our results suggest that the observed variation in dimorphism of Charadrii can be best explained by male body size responding more sensitively to variable sexual selection than female body size.  相似文献   

16.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

17.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

18.
Sexual‐size dimorphism (SSD) is widespread in animals. Body length is the most common trait used in the study of SSD in reptiles. However, body length combines lengths of different body parts, notably heads and abdomens. Focusing on body length ignores possible differential selection pressures on such body parts. We collected the head and abdomen lengths of 610 lizard species (Reptilia: Squamata: Sauria). Across species, males have relatively larger heads, whereas females have relatively larger abdomens. This consistent difference points to body length being an imperfect measure of lizard SSD because it comprises both abdomen and head lengths, which often differ between the sexes. We infer that female lizards of many species are under fecundity selection to increase abdomen size, consequently enhancing their reproductive output (enlarging either clutch or offspring size). In support of this, abdomens of lizards laying large clutches are longer than those of lizards with small clutches. In some analyses, viviparous lizards have longer abdomens than oviparous lizards with similar head lengths. Our data also suggest that male lizards are under sexual selection to increase head size, which is positively related to winning male–male combats and to faster grasping of females. Thus, larger heads could translate into higher probability to mate. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 665–673.  相似文献   

19.
Abstract.  1. Sexual differences in body size are expected to evolve when selection on female and male sizes favours different optima.
2. Insects have typically female-biased size dimorphism that is usually explained by the strong fecundity advantage of larger size in females. However, numerous exceptions to this general pattern have led to the search for selective pressures favouring larger size in males.
3. In this study, the benefits of large size were investigated in males of four species of ichneumonine wasps, a species-rich group of parasitoids, many representatives of which exhibit male-biased size dimorphism.
4. Mating behaviour of all ichneumonine wasps are characterised by pre-copulatory struggles, in the course of which males attempt to override female reluctance to mate. A series of laboratory trials was conducted to study the determinants of male mating success.
5. A tendency was found for larger males as well as those in better condition to be more successful in achieving copulations. Size dimorphism of the species studied, mostly male-biased in hind tibia length but female-biased in body weight, indicates that sexual selection in males favours longer bodies and appendages rather than larger weight.
6. The qualitative similarity of the mating patterns suggests that sexual selection cannot completely explain the considerable among-species differences in sexual size dimorphism.
7. The present study cautions against using various size indices as equivalents for calculating sexual size dimorphism.
8. It is suggested that female reluctance in ichneumonine wasps functions as a mechanism of female mate assessment.  相似文献   

20.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号