首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant.  相似文献   

2.
3.
In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant.  相似文献   

4.
To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the ss subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44–50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iclR, and fadR) achieved only medium cell densities (15–21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth. On a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the ss regulon to grow to high cell densities, at least not under the conditions tested. Journal of Industrial Microbiology & Biotechnology (2000) 24, 421–430. Received 12 November 1999/ Accepted in revised form 24 February 2000  相似文献   

5.
6.
7.
Individual deletions of acs and aceA genes in E. coli B (BL21) showed little difference in the metabolite accumulation patterns but deletion of the ackA gene alone or together with pta showed acetic acid gradually accumulated to 3.1 and 1.7 g/l, respectively, with a minimal extended lag in bacterial growth and a higher pyruvate formation. Single poxB deletion in E. coli B (BL21) or additional poxB deletion in the ackA-pta mutants did not change the acetate accumulation pattern. When the acetate production genes (ackA-pta-poxB) were deleted in E. coli B (BL21) acetate still accumulated. This may be an indication that perhaps acetate is not only a by-product of carbon metabolism; it is possible that acetate plays also a role in other cellular metabolite pathways. It is likely that there are alternative acetate production pathways.  相似文献   

8.
9.
10.
11.
Presence of starved, stationary phase-like zones in biofilms seems to be an important factor for biofilm formation. In this study, roles of rpoS gene in the formation of Escherichia coli biofilms were investigated. E. coli MG1655 wild type (WT) and rpoS mutant (DeltarpoS) strains were used to compare biofilm formation capacity and global gene expression. Even though the DeltarpoS strain could attach and form microcolonies on glass surfaces, it could not establish mature biofilms. DNA microarray analysis revealed that WT biofilms (WBF) showed similar pattern of gene expression with WT planktonic stationary phase, whereas DeltarpoS biofilms (MBF) showed similar pattern of gene expression with WT planktonic exponential phase. Genes involved in energy metabolism (atpIBEFHAG, atpC, cydAB) and flagella synthesis (flgB, flgC, flhD, fliA, fliC, fliY) showed increased expression in the MBF, but not in the WBF. Moreover, genes involved in stress responses (blc, cspG, dinD poxB, wcaF, wcaI, and yfcF) showed increased expression in the WBF compared to the MBF. These results suggested that the rpoS gene contributed in maturation of E. coli biofilms through regulation of global gene expression including energy metabolism, motility, and stress responses.  相似文献   

12.
We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YYC202 frdABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyoxylate did not reenter the tricarboxylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase.  相似文献   

13.
14.
15.
16.
The pyruvate oxidase structural gene (poxB) of Escherichia coli was cloned into derivatives of plasmid pBR322. The gene was first cloned into a cosmid vector by selection for the tetracycline resistance determinant of a closely linked Tn10 insertion (no direct selection for the gene was available). Subsequent subcloning resulted in localization of the gene to a 3.1-kilobase-pair DNA segment. Two of the smaller poxB plasmids were shown to cause the overproduction of oxidase activity (by six- to eightfold), and one of these plasmids was shown to encode a protein having the size and antigenic determinants of pyruvate oxidase. Introduction of poxB plasmids into strains (aceEF) lacking pyruvate dehydrogenase activity relieved the aerobic growth requirement of the strains for exogenous acetate.  相似文献   

17.
18.
The effect of poxB gene knockout on metabolism in Escherichia coli was investigated in the present paper based on the growth characteristics and the activities of the enzymes involved in the central metabolic pathways. The absence of pyruvate oxidase reduced the glucose uptake rate and cell growth rate, and increased O2 consumption and CO2 evolution. The enzyme assay results showed that although glucokinase activity increased, the flux through glycolysis was reduced due to the down-regulation of the other glycolytic enzymes such as 6-phosphofructosekinase and fructose bisphosphate aldolase in the poxB mutant. TCA cycle enzymes such as citrate synthase and malate dehydrogenase were repressed in the poxB mutant when the cells were cultivated in LB medium. The pyruvate oxidase mutation also resulted in the activation of glucose-6-phosphate dehydrogenase and acetyl-CoA synthetase. All these results suggest that pyruvate oxidase is not only a stationary-phase enzyme as previously known, and that the removal of the poxB gene affects the central metabolism at the enzyme level in E. coli.  相似文献   

19.
Summary The cloning, sequencing and mutational analysis of the Bradyrhizobium japonicum symbiotic nitrogen fixation genes fixL and fixJ are reported here. The two genes were adjacent and probably formed an operon, fixLJ. The predicted FixL and FixJ proteins, members of the two-component sensor/regulator family, were homologous over almost their entire lengths to the corresponding Rhizobium meliloti proteins (approx. 50% identity). Downstream of the B. japonicum fixJ gene was found an open reading frame with 138 codons (ORF138) whose product shared 36% homology with the N-terminal part of FixJ. Deletion and insertion mutations within fixL and fixJ led to a loss of approximately 90% wildtype symbiotic nitrogen fixation (Fix) activity, whereas an ORF138 mutant was Fix+. In fixL, fixJ and ORF138 mutant backgrounds, the aerobic expression of the fixR-nifA operon was not affected. NifA itself did not regulate the expression of the fixJ gene. Thus, the B. japonicum FixL and FixJ proteins were neither involved in the regulation of aerobic nifA gene expression nor in the anaerobic NifA-dependent autoregulation of the fixRnifA operon; rather they appeared to control symbiotically important genes other than those whose expression was dependent on the NifA protein. The fixL and fixJ mutant strains were unable to grow anaerobically with nitrate as the terminal electron acceptor. Therefore, some of the FixJ-dependent genes in B. japonicum may be concerned with anaerobic respiration.  相似文献   

20.
The rpoS (katF) gene of Escherichia coli encodes a putative sigma factor (sigma S) required for the expression of a variety of stationary phase-induced genes, for the development of stationary-phase stress resistance, and for long-term starvation survival (R. Lange and R. Hengge-Aronis, Mol. Microbiol. 5:49-59, 1991). Here we show that the genes otsA, otsB, treA, and osmB, previously known to be osmotically regulated, are also induced during transition into stationary phase in a sigma S-dependent manner. otsA and otsB, which encode trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase, respectively, are involved in sigma S-dependent stationary-phase thermotolerance. Neither sigma S nor trehalose, however, is required for the development of adaptive thermotolerance in growing cells, which might be controlled by sigma E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号