首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of P(i) was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed.  相似文献   

2.
Koebmann B  Solem C  Jensen PR 《The FEBS journal》2005,272(9):2292-2303
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.  相似文献   

3.
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed.  相似文献   

4.
5.
Lactococcus lactis ssp. lactis ATCC 19435 is known to produce mixed acids when grown on maltose. A change in fermentation conditions only, elevated temperatures (up to 37 °C) and reduced pH values (down to 5.0) resulted in a shift towards homolactic product formation. This was accompanied by decreased growth rate and cell yield. The results are discussed in terms of redox balance and maintenance, and the regulation of lactate dehydrogenase and pyruvate formate-lyase. Received: 14 December 1998 / Received revision: 12 January 1999 / Accepted: 22 January 1999  相似文献   

6.
Two mutant strains of Lactococcus lactis in which the promoter of the las operon, harboring pfk, pyk, and ldh, were replaced by synthetic promoters were constructed. These las mutants had an approximately twofold decrease in the activity of phosphofructokinase, whereas the activities of pyruvate kinase and lactate dehydrogenase remained closer to the wild-type level. In defined medium supplemented with glucose, the growth rate of the mutants was reduced to 57 to 70% of wild-type levels and the glycolytic flux was reduced to 62 to 76% of wild-type levels. In complex medium growth was even further reduced. Surprisingly, the mutants still showed homolactic fermentation, which indicated that the limitation was different from standard glucose-limited conditions. One explanation could be that the reduced activity of phosphofructokinase resulted in the accumulation of sugar-phosphates. Indeed, when one of the mutants was starved for glucose in glucose-limited chemostat, the growth rate could gradually be increased to 195% of the growth rate observed in glucose-saturated batch culture, suggesting that phosphofructokinase does affect the concentration of upstream metabolites. The pools of glucose-6-phosphate and fructose-6-phosphate were subsequently found to be increased two- to fourfold in the las mutants, which indicates that phosphofructokinase exerts strong control over the concentration of these metabolites.  相似文献   

7.
Summary Streptococcus lactis ferments glucose in a homolactic fashion but a heterolactic fermentation pattern is observed when it is grown on maltose. Using in vivo phosphorus-31 and carbon-13 NMR studies of glucose-metabolizing cells we confirmed that fructosediphosphate (FDP) is the major glycolytic intermediate and that the production of lactate causes major changes both in the intra- and extracellular pH values. Starved cells contain mainly 3-phosphoglycerate (3-PGA) and some phosphoenolpyruvate (PEP). Metabolism of maltose also brings about major changes in pH, but it was unclear from the poorly resolved in vivo spectra if FDP was the main glycolytic intermediate present. This question was further studied by analyzing perchloric acid extracts by phosphorus-31 NMR. These studies showed that glucose-metabolizing cells have higher levels of FDP and lower levels of inorganic phosphate (P i ) than maltose-metabolizing cells. 3-PGA always remained present in the latter cells suggesting that these exist in a semi-starved state which is probably the reason for their heterolactic fermentation pattern. In the course of these studies we also examined the effects of the inhibitors 2-deoxyglucose, fluoride and iodoacetate. We could demonstrate that by judicious choice of carbon sources and inhibitors one could completely reduce the intracellular P i pool. This suggests that one should be able to regulate the shift from heterolactic to homolactic fermentation, as P i is considered to be the most potent inhibitor of pyruvate kinase in these cells.Sponsored by grants from the Swedish Natural Sciences Research Council (NFR) (to BHH and HJV), the Biotechnology Research Foundation (SBF) (to BHH) and the Canadian Natural Sciences Research Council (NSERC) (to HJV)  相似文献   

8.
The study of batch kinetics of Lactococcus lactis cell growth and product formation reveals three distinct metabolic behaviors depending upon the availability of oxygen to the culture and the presence of hemin in the medium. These three cultivation modes, anerobic homolactic fermentation, aerobic heterolactic fermentation, and hemin-stimulated respiration have been studied at pH 6.0 and 30 degrees C with a medium containing a high concentration of glucose (60 g/L). A maximum cell density of 5.78 g/L was obtained in the batch culture under hemin-stimulated respiration conditions, about three times as much as that achieved with anerobic homolactic fermentation (1.87 g/L) and aerobic heterolactic fermentation (1.80 g/L). The maximum specific growth rate was 0.60/h in hemin-stimulated respiration, slightly higher than that achieved in homolactic fermentation (0.56/h) and substantially higher than that in heterolactic fermentation (0.40/h). Alteration of metabolism caused by the supplementation of oxygen and hemin is evidenced by changes in both cell growth kinetics and metabolite formation kinetics, which are characterized by a unique pseudo-diauxic growth of L. lactis. We hypothesise that Lactococcus lactis generates bioenergy (ATP) through simultaneous lactate formation and hemin-stimulated respiration in the primary exponential phase, when glucose is abundant, and utilizes lactate for cell growth and cell maintenance in the stationary phase, after glucose is exhausted. We also examined the applicability of a modified logistic model and the Luedeking-Piret model for cell growth kinetics and metabolite formation kinetics, respectively.  相似文献   

9.
10.
11.
Saccharomyces cerevisiae are unable to maintain high rates of fermentation during transition from catabolism of hexoses to maltose. This phenomenon, termed ‘maltose lag’, presents problems for the baking, brewing and distilling industries, which rely on yeast catabolism of mixtures of hexoses and maltose. Maltose utilisation requires the presence of maltose permease and α-glucosidase (maltase), encoded by MAL genes. Synthesis of these is induced by maltose and repressed by glucose. One strain of baker’s yeast used in this work exhibited a marked maltose lag, whereas a second strain exhibited a shorter lag during conversion from hexose to maltose metabolism. The extent of the lag was linked to the levels of maltose permease and maltase in cells at the time of inoculation into mixed sugar medium. This view is supported by results showing that pulsing yeast with maltose to induce expression of MAL genes prior to inoculation into mixed sugar medium, enhanced sugar fermentation. Maltose pulsing of yeasts could therefore be useful for enhancing some fermentations relevant to baking and other yeast industries. Received 24 December 1988/ Accepted in revised form 18 March 1999  相似文献   

12.
Effect of Oxygen on Lactose Metabolism in Lactic Streptococci   总被引:11,自引:3,他引:8       下载免费PDF全文
Three strains of Streptococcus lactis, two of Streptococcus cremoris, and one of Streptococcus thermophilus metabolized oxygen in the presence of added carbohydrate primarily via a closely coupled NADH oxidase/NADH peroxidase system. No buildup of the toxic intermediate H2O2 was detected with the three S. lactis strains. All six strains contained significant superoxide dismutase activity and are clearly aerotolerant. Lactose- or glucose-driven oxygen consumption was biphasic, with a rapid initial rate followed by a slower secondary rate which correlated with factors affecting the in vivo activation of lactate dehydrogenase. The rate of oxygen consumption was rapid under conditions that led to a reduction in lactate dehydrogenase activity (low intracellular fructose 1,6-bisphosphate concentration). These conditions could be achieved with nongrowing cells by adding lactose at a constant but limiting rate. When the rate of lactose fermentation was limited to 5% of its maximum, nongrowing cells of S. lactis strains ML3 and ML8 carried out an essentially homoacetic fermentation under aerobic conditions. These same cells carried out the expected homolactic fermentation when presented with excess lactose under anaerobic conditions. Homoacetic fermentation leads to the generation of more energy, by substrate-level phosphorylation via acetate kinase, than the homolactic fermentation. However, it was not observed in growing cells and was restricted to slow fermentation rates with nongrowing cells.  相似文献   

13.
Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y(ATP) (cell mass produced per mole of ATP). The pH that showed the highest Y(ATP) corresponded to the pH of the natural habitat of the organisms.  相似文献   

14.
1. Solutions of glucose, maltose or other sugars were pumped at controlled rates into a yeast suspension and the extracellular sugar concentration was determined. The technique was especially suitable for studying the kinetics of fermentation at low rates of sugar utilization. At high rates the fermentation system was unstable. 2. Glucose fermentation was fitted by a model in which a diffusion barrier with first-order kinetics is interposed between the environment and the site of hexokinase. 3. Aerobic conditions affected the fermentation enzyme system but not the diffusion mechanism. 4. The kinetics of maltose fermentation at low rates approximated to those of the hydrolysis of maltose by the enzyme maltase, as studied in suspensions of broken cells.  相似文献   

15.
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.  相似文献   

16.
The rate of fermentation of glucose and maltose and the maltase activity of cellfree preparations of yeast were investigated during yeast propagation at the individual production stages. It was found that the yeast cells do not change much in their fermentation of glucose but that the level of the maltose-hydrolyzing enzyme undergoes changes, together with the character of the anaerobic fermentation of maltose, depending on the character of cultivation (batch or incremental feeding). After an initial decrease the maltose activity of cell-free preparations is maintained practically on the same level until the expedition phase is reached when it rapidly decreases to low values. The basis of the changes investigated is discussed together with their importance for yeast production technology.  相似文献   

17.
Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium widely used in the production of most fermented food due to its ability to thrive in several environmental niches, including the human gut. In order to cope with different growth conditions, it has developed complex molecular response mechanisms, characterized by the induction of a large set of proteins mainly regulated by HrcA and CtsR repressors as well as by global regulators such as carbon catabolite control protein A (CcpA). In this study, the role of CcpA in the regulation of growth under anaerobiosis and aerobiosis, and the adaptation to aeration in L. plantarum WCFS1 were comprehensively investigated by differential proteomics. The inactivation of ccpA, in both growth conditions, significantly changed the expression level of 76 proteins, mainly associated with carbohydrate and energy metabolism, membrane transport, nucleotide metabolism, protein biosynthesis and folding. The role of CcpA as pleiotropic regulator was particularly evident at the shift from homolactic fermentation to mixed fermentation. Proteomic results also indicated that the mutant strain was more responsive to aerobic growth condition.  相似文献   

18.
When lactic streptococci were embedded in agar gels and incubated at 30°C, the end products of carbohydrate fermentation depended on the initial cell density, which determined the subsequent distribution and size of colonies in the gel. With high initial cell densities, microcolonies formed close together and lactose and glucose were converted almost entirely to lactate. However, inoculation with a small number of cells, which then grew to form widely spaced and comparatively large colonies, resulted in up to 30% diversion of end product, usually to formate, ethanol, and acetate. In these “low-colony-density” gel cultures, the initial rate of fermentation was exponential and only lactate was formed. However, this rate then became linear and fermentation became progressively more heterolactic. Streptococcus lactis ML8 was the only strain among the 10 tested which remained homolactic. Incubation at temperatures either above or below the optimum for growth and metabolism decreased the diversion to end products other than lactate. The change from homo- to heterolactic fermentation appears to be caused by carbohydrate depletion in the vicinity of the colony, so that fermentation is then limited by the diffusion of substrate. Growth of cells on gel surfaces exposed to air resulted in up to 40% diversion of end product from lactate, mainly to CO2, acetoin, 2,3-butanediol, and acetate. Six of the 12 Streptococcus cremoris strains tested remained homolactic under these aerobic conditions, whereas all 8 of the S. lactis strains tested, including ML8, were heterolactic.  相似文献   

19.
20.
The Lactobacillus brevis subsp. lindneri CB1 fructose-negative strain utilized fructose in co-fermentation with maltose or glucose. Compared to the maltose (17 g/l) fermentation, the simultaneous fermentation of maltose (10 g/l) and fructose (7 g/l) increased cell yield (A 620from 2.6 to 3.3) and the concentrations of lactic acid and especially of acetic acid (from 2.45 g/l to 3.90 g/l), produced mannitol (1.95 g/l) and caused a decrease in the amount of ethanol (from 0.46 g/l to 0.08 g/l). The utilization of fructose depended on the continuous presence of maltose in the growth medium and the two carbohydrates were consumed in a molar ratio of about 2:1. The presence of tagatose (a fructose stereoisomer) partially inhibited fructose consumption and consequently caused a decrease of the end products of the co-metabolism. Since maltose was naturally present during sourdough fermentation, the addition of only 6 g fructose/kg wheat dough enabled the co-fermentation of maltose and fructose by L. brevis subsp. lindneri CB1. A higher titratable acidity and acetic acid concentration, and a reduced quotient of fermentation (2.7) were obtained by co-fermentation compared with normal sourdough fermentation. Some interpretations of the maltose-fructose co-fermentation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号