首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soybean leaf cDNA clone, pSAT2, was isolated by hybridization to a carrot aspartate aminotransferase (EC 2.6.1.1.; AAT) cDNA clone at low stringency. pSAT2 contained an open reading frame encoding a 47640 Da protein. The protein encoded by pSAT2 showed significant sequence similarity to AAT proteins from both plants and animals. It was most similar to two Panicum mitochondrial AATs, 81.5% and 82.0% identity. Alignment of the pSAT2-encoded protein with other mature AAT enzymes revealed a 25 amino acid N-terminal extension with characteristics of a mitochondrial transit peptide. A plasmid, pEXAT2, was constructed to encode the mature pSAT2 protein lacking the putative mitochondrial transit peptide. Escherichia coli containing the plasmid expressed a functional AAT isozyme which comigrated with the soybean AAT4 isozyme during agarose gel electrophoresis. Equilibrium sucrose gradient sedimentation of soybean extracts demonstrated that AAT4 specifically cofractionated with mitochondria. Antibodies raised against the pEXAT2-encoded AAT protein reacted with AAT4 of soybean and not with other AAT isozymes detected in soybean tissues, providing further evidence that clone pSAT2 encodes the soybean mitochondrial isozyme AAT4.  相似文献   

2.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

3.
4.
5.
From the rice leaf cDNA library, we have cloned a cDNA encoding rice chloroplast translational elongation factor EF-Tu (tufA). The rice tufA cDNA clone contains 1678 nucleotides and codes for a 467 amino acid protein including a putative chloroplast transit peptide of 59 amino acid residues. The predicted molecular mass of the mature protein is approximately 45 kDa. This cDNA clone contains the 61 nucleotides of the 5' untranslated region (UTR) and the 213 nucleotides of 3' UTR. Amino acid sequence identity of the rice tufA with the mature chloroplast EF-Tu proteins of tobacco, pea, arabidopsis, and soybean ranges from 83% to 86%. The deduced polypeptide of the rice tufA cDNA contains GTP binding domains in its N-terminal region and chloroplast EF-Tu signature regions in the C-terminal region. The rice tufA appears to exist as a single copy gene, although its homologues of maize and oat exist as multiple copy genes. The rice tufA gene is located in chromosome 1 and is more highly expressed in the leaf than in root tissue.  相似文献   

6.
A cDNA clone encoding a soybean allergen, Gly m Bd 28K, has been isolated. The clone has a 1567-bp cDNA insert with a 1419-bp open reading frame and a 148-bp 3'-untranslated region, followed by a polyadenylation tail. The open reading frame was shown to encode a polypeptide composed of 473 amino acids. The chemically determined amino acid sequences of the peptides obtained from the allergen, including its N-terminal peptide, were shown to be contained in the N-terminal region of the amino acid sequence deduced from the cDNA, showing that the first half of the cDNA encodes the allergen with a preceding segment of 21 amino acids. The peptide fragment including the allergen was expressed as a fusion protein with glutathione S-transferase in Escherichia coli and immunoblotted with the sera of soybean-sensitive patients and the monoclonal antibody against the allergen. Furthermore, homology analyses demonstrate that the polypeptide for the cDNA exhibits high homology with the MP27/MP32 proteins in pumpkin seeds and the carrot globulin-like protein. This finding suggests that the polypeptide may consist of a 21-amino acid segment as a part of the signal peptide and the proprotein, which may be converted to two mature proteins, Gly m Bd 28K and a 23-kDa protein, during the development of soybean cotyledons.  相似文献   

7.
8.
A cDNA clone encoding an ascorbate peroxidase was isolated from the cDNA library from halotolerant Chlamydomonas W80 by a simple screening method based on the bacterial expression system. The cDNA clone contained an open reading frame encoding a mature protein of 282 amino acids with a calculated molecular mass of 30,031 Da, preceded by the chloroplast transit peptide consisting of 37 amino acids. In fact, ascorbate peroxidase was localized in the chloroplasts of Chlamydomonas W80 cells; the activity was detected in the stromal fraction but not in the thylakoid membrane. The deduced amino acid sequence of the cDNA showed 54 and 49% homology to chloroplastic and cytosolic ascorbate peroxidase isoenzymes of spinach leaves, respectively. The enzyme from Chlamydomonas W80 cells was purified to electrophoretic homogeneity. The molecular properties of the purified enzyme were similar to those of the other algal ascorbate peroxidases rather than those of ascorbate peroxidases from higher plants. The enzyme was relatively stable in ascorbate-depleted medium compared with the chloroplastic ascorbate peroxidase isoenzymes of higher plants. The presence of NaCl (3%) as well as of beta-d-thiogalactopyranoside was needed for the expression of Chlamydomonas W80 ascorbate peroxidase in Escherichia coli.  相似文献   

9.
Adenylosuccinate synthetase (EC 6.3.4.4) catalyzes the first step in formation of AMP from IMP. At least two isozymes exist in vertebrate tissue. An acidic form, present in most tissues, has been suggested to be involved in de novo biosynthesis while a basic isozyme, which predominates in muscle, appears to function in the purine nucleotide cycle. Antibodies specific for the basic isozyme detect a single protein in mouse tissues with highest levels in skeletal muscle, tongue, esophagus, and heart tissue consistent with a role for the enzyme in muscle metabolism. A series of degenerate oligonucleotides were constructed based on peptide sequences from purified rat muscle enzyme and then used to clone a mouse muscle cDNA encoding the basic isozyme. The clone contains a open reading frame of 1356 bases with 452 amino acids. Northern analysis of RNA from mouse tissues showed a tissue distribution similar to that of the protein, indicating a high level of gene expression in muscle. Transfection of COS cells with the mouse muscle cDNA allows expression of a functional protein with a molecular mass of approximately 50 kDa, consistent with the open reading frame and the size of the isolated rat enzyme. The deduced amino acid sequence of the mouse synthetase is 47 and 37% identical to the synthetase sequences from Dictyostelium discoideum and Escherichia coli, respectively. The availability of antibodies and cDNA clones specific for the basic isozyme of adenylosuccinate synthetase from muscle will facilitate future genetic and biochemical analysis of this protein and its role in muscle physiology.  相似文献   

10.
A cDNA expression library was constructed from light-grown Euglena gracilis poly(A)-rich RNA in lambda gt11. Antibodies to Euglena hydroxymethylbilane synthase, the third enzyme in the porphyrin biosynthetic pathway, were used to screen the library and a clone encoding part of the sequence of hydroxymethylbilane synthase was identified. This was used to rescreen the library and a full-length clone was isolated, which encoded not only the entire mature protein (Mr 36,927), but also an N-terminal extension of 139 amino acids. The deduced Mr of the whole polypeptide is 51,744, which corresponds to the size of the protein immunoprecipitated from the translation products of Euglena poly(A)-rich RNA. The mature protein is 60-70% similar to hydroxymethylbilane synthase from human erythrocytes and Escherichia coli. The sequence of the N-terminal extension has similarities to both the transit peptides of chloroplast proteins and those for the endoplasmic reticulum. This is the first report both of a cDNA clone for an enzyme of the chlorophyll biosynthetic pathway and of a putative transit peptide for a nuclear-encoded Euglena protein.  相似文献   

11.
12.
13.
The isozyme pattern of superoxide dismutase (SOD) in tomato consists of two Cu,Zn isozymes located, respectively, in the chloroplast and in the cytosol, as well as additional isozymes of the Mn or Fe SOD type. We have shown that SOD-1 is the chloroplastic Cu,Zn SOD and is related to cDNA clone T10. Restriction fragment length polymorphism (RFLP) analysis was performed with two cDNA clones representing tomato Cu,Zn-superoxide dismutases. T10, coding for the chloroplast isozyme, was thus mapped to chromosome 11, between marker TG46 and TG108, while clone P31, coding for the cytosolic Cu,Zn SOD isozyme, was mapped to chromosome 1 between TG24 and TG81. SOD is associated with the response of plants to various environmental stresses; the mapping information presented here would permit the demonstration of this association by genetic analysis.  相似文献   

14.
Summary We have isolated and analyzed cDNA clones for aSilene pratensis chlorophyll-a/b-binding protein (CAB) and a small subunit (SS) of ribulosebisphosphate carboxylase. These cDNA clones contain the coding information for the complete transit peptides. The CAB clone codes for a divergent CAB protein that differs from most published CAB sequences in both the transit peptide part and in the amino terminal part of the mature protein, a region with an important regulatory function. The SS clone codes for a precursor that is homologous to other published precursor sequences. In the mature part some non-conservative changes are observed.Silene cDNA clones for four chloroplast specific precursor proteins that are directed towards three different chloroplast compartments have been analyzed and the transit peptides compared.  相似文献   

15.
Two rice cDNA clones (COS6 and COS9) were isolated, corresponding to genes that were highly expressed in roots from seedlings and mature plants. A genomic clone (GOS9) corresponding to cDNA clone COS9 was isolated and the intron/exon structure was determined by comparing the nucleotide sequences of the mRNA and the genomic clone. 5 ends and 3 ends of the mRNA were determined by primer extension and S1-nuclease mapping respectively. The open reading frame present in GOS9 potentially encodes a protein (14kDa) that does not show any significant homology to other proteins in databases.  相似文献   

16.
17.
18.
Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.  相似文献   

19.
A 34,000-Da protein (P34) is one of the four major soybean oil body proteins observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of isolated organic solvent-extracted oil bodies from mature seeds. P34 is processed during seedling growth to a 32,000-Da polypeptide (P32) by the removal of an amino-terminal decapeptide (Herman, E.M., Melroy, D.L., and Buckhout, T.J. (1990) Plant Physiol, in press). A soybean lambda ZAP II cDNA library constructed from RNA isolated from midmaturation seeds was screened with monoclonal antibodies directed against two different epitopes of P34. The isolated cDNA clone encoding P34 contains 1,350 base pairs terminating in a poly(A)+ tail and an open reading frame 1,137 base pairs in length. The open reading frame includes a deduced amino acid sequence which matches 23 of 25 amino-terminal amino acids determined by automated Edman degradation of P34 and P32. The cDNA predicts a mature protein of 257 amino acids and of 28,641 Da. The open reading frame extends 5' from the known amino terminus of P34 encoding a possible precursor and signal sequence segments with a combined additional 122 amino acids. Prepro-P34 is deduced to be a polypeptide of 42,714 Da, indicating that the cDNA clone apparently encodes a polypeptide of 379 amino acids. A comparison of the nucleotide and deduced amino acid sequences in the GenBank Data Bank with the sequence of P34 has shown considerable sequence similarity to the thiol proteases of the papain family. Southern blot analysis of genomic DNA indicated that the P34 gene has a low copy number.  相似文献   

20.
Pea dehydrins: identification,characterisation and expression   总被引:3,自引:0,他引:3  
An antiserum raised against dehydrin from maize (Zea mays) recognised several polypeptides in extracts of pea (Pisum sativum) cotyledons. A cDNA expression library was prepared from mRNA of developing cotyledons, screened with the antiserum and positive clones were purified and characterised. The nucleotide sequence of one such clone, pPsB12, contained an open reading frame which would encode a polypeptide with regions of significant amino acid sequence similarity to dehydrins from other plant species.The deduced amino acid sequence of the pea dehydrin encoded by B12 is 197 amino acids in length, has a high glycine content (25.9%), lacks tryptophan and is highly hydrophilic. The polypeptide has an estimated molecular mass of 20.4 kDa and pI=6.4. An in vitro synthesised product from the clone comigrates with one of the in vivo proteins recognised by the antiserum.A comparison of the pea dehydrin sequence with sequences from other species revealed conserved amino acid regions: an N-terminal DEYGNP and a lysine-rich block (KIKEKLPG), both of which are present in two copies. Unexpectedly, pea dehydrin lacks a stretch of serine residues which is conserved in other dehydrins.B12 mRNA and dehydrin proteins accumulated in dehydration-stressed seedlings, associated with elevated levels of endogenous abscisic acid (ABA). Applied ABA induced expression of dehydrins in unstressed seedlings. Dehydrin expression was rapidly reversed when seedlings were removed from the stress or from treatment with ABA and placed in water.During pea cotyledon development, dehydrin mRNA and proteins accumulated in mid to late embryogenesis. Dehydrin proteins were some of the most actively synthesised at about the time of maximum fresh weight and represent about 2% of protein in mature cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号