首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulatory activities of 2 beta-(3-hydroxypropoxy)-1 alpha, 25-dihydroxyvitamin D3 [ED-71], a novel synthetic vitamin D3 derivative, on calcium metabolism were investigated. The compound behaved similar to 1 alpha, 25-dihydroxyvitamin D3 [1,25(OH)2D3] in the ex vivo intestinal calcium transport using rat everted gut sac and the in vivo bone mobilization using vitamin D-deficient rats. By means of Raisz's assay method, 45Ca releasing activity of ED-71 was not greater than that of 1,25(OH)2D3. The time course curve of ED-71 in plasma made a mild round shape compared with that of 1,25(OH)2D3 and the former's plasma concentration remained increased longer than the latter's. The therapeutic effect of ED-71 for the animal models with osteoporosis seemed to be better than that of 1,25(OH)2D3. The results suggest that ED-71 may be a promising drug for therapy of osteoporosis.  相似文献   

2.
We have recently reported that 23(S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) efficiently blocks the differentiation of HL-60 cells induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (Miura, D., Manabe, K., Ozono, K., Saito, M., Gao, Q., Norman, A. W., and Ishizuka, S. (1999) J. Biol. Chem. 274, 16392-16399). To clarify the molecular mechanisms of this antagonism, we examined whether TEI-9647 antagonizes the genomic effects of 1alpha,25(OH)(2)D(3). 10(-7) to 10(-9) M TEI-9647 inhibited the transactivation effect of 10(-8) M 1alpha,25(OH)(2)D(3) in a dose-dependent manner, while TEI-9647 alone did not activate the reporter activity driven by SV40 promoter containing two vitamin D response elements in Saos-2 cells. The antagonistic effect of TEI-9647 was also observed using the rat 24-hydroxylase gene promoter, but the effect was weaker in HeLa and COS-7 cells than in Saos-2 cells. TEI-9647 also exhibited antagonism in an assay system where the VDR fused to the GAL4 DNA-binding domain and the reporter plasmid containing the GAL4 binding site were used in Saos-2 cells, but did not in HeLa cells. TEI-9647 reduced the interaction between VDR and RXRalpha according to the results obtained from the mammalian two-hybrid system in Saos-2 cells, but did not in HeLa cells. The two-hybrid system also revealed that the interaction between VDR and SRC-1 was reduced by TEI-9647 in Saos-2 cells. These results demonstrate that the novel 1alpha,25(OH)(2)D(3) analogue, TEI-9647, is the first synthetic ligand for the VDR that efficiently antagonizes the action of 1alpha, 25(OH)(2)D(3), although the extent of its antagonism depends on cell type.  相似文献   

3.
Identification of a novel rat microsomal vitamin D3 25-hydroxylase   总被引:2,自引:0,他引:2  
Vitamin D3 requires the 25-hydroxylation in the liver and the subsequent 1alpha-hydroxylation in the kidney to exert its biological activity. Vitamin D3 25-hydroxylation is hence an essential modification step for vitamin D3 activation. Until now, three cytochrome P450 molecular species (CYP27A1, CYP2C11, and CYP2D25) have been characterized well as vitamin D3 25-hydroxylases. However, their physiological role remains unclear because of their broad substrate specificities and low activities toward vitamin D3 relative to other substrates. In this study, we purified vitamin D3 25-hydroxylase from female rat liver microsomes. The activities of the purified fraction toward vitamin D3 and 1alpha-hydroxyvitamin D3 were 1.1 and 13 nmol/min/nmol of P450, respectively. The purified fraction showed a few protein bands in a 50-60-kDa range on SDS-PAGE, typical for a cytochrome P450. The tryptic peptide mass fingerprinting of a protein band (56 kDa) with matrix-assisted laser desorption ionization/time of flight mass spectrometry identified this band as CYP2J3. CYP2J3 was heterologously expressed in Escherichia coli. Purified recombinant CYP2J3 showed strong 25-hydroxylation activities toward vitamin D3 and 1alpha-hydroxyvitamin D3 with turnover numbers of 3.3 and 22, respectively, which were markedly higher than those of P450s previously characterized as 25-hydroxylases. Quantitative PCR analysis showed that CYP2J3 mRNA is expressed at a level similar to that of CYP27A1 without marked sexual dimorphism. These results strongly suggest that CYP2J3 is the principal P450 responsible for vitamin D3 25-hydroxylation in rat liver.  相似文献   

4.
Y Sorgue  L Miravet 《Steroids》1978,31(5):653-660
This paper describes a simple chromatographic technique on Sephadex LH20 for the separation of vitamin D3 sulfate from free vitamin D3 and its metabolites. This technique has been used in the study of vitamin D3 sulfate metabolism in rats. Seven hours after injection of vitamin D3 sulfate (35S or 35S and 3H) only the peak of vitamin D sulfoconjugate was found in chromatographic elution of serum extracts.  相似文献   

5.
6.
7.
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion.  相似文献   

8.
9.
10.
24,25-Dihydroxyvitamin D (24,25VD) is a major catabolite of 25-hydroxyvitamin D (25VD) metabolism, and may be physiologically active. Our objectives were to: (1) characterize the response of serum 24,25VD(3) to vitamin D(3) (VD(3)) supplementation; (2) test the hypothesis that a higher 24,25VD(3) to 25VD(3) ratio (24,25:25VD(3)) predicts 25VD(3) response. Serum samples (n=160) from wk 2 and wk 6 of a placebo-controlled, randomized clinical trial of VD(3) (28,000IU/wk) were analyzed for serum 24,25VD(3) and 25VD(3) by mass spectrometry. Serum 24,25VD(3) was highly correlated with 25VD(3) in placebo- and VD(3)-treated subjects at each time point (p<0.0001). At wk 2, the 24,25:25VD(3) ratio was lower with VD(3) than with placebo (p=0.035). From wk 2 to wk 6, the 24,25:25VD(3) ratio increased with the VD(3) supplement (p<0.001) but not with placebo, such that at wk 6 this ratio did not significantly differ between groups. After correcting for potential confounders, we found that 24,25:25VD(3) at wk 2 was inversely correlated to the 25VD(3) increment by wk 6 in the supplemented group (r=-0.32, p=0.02) but not the controls. There is a strong correlation between 24,25VD(3) and 25VD(3) that is only modestly affected by VD(3) supplementation. This indicates that the catabolism of 25VD(3) to 24,25VD(3) rises with increasing 25VD(3). Furthermore, the initial ratio of serum 24,25VD(3) to 25VD(3) predicted the increase in 25VD(3). The 24,25:25VD(3) ratio may therefore have clinical utility as a marker for VD(3) catabolism and a predictor of serum 25VD(3) response to VD(3) supplementation.  相似文献   

11.
12.
13.
14.
A series of 16-en-22-oxa-derivatives of vitamin D3 based on the structure of maxacalcitol (2) were prepared. Maxacalcitol is currently used topically for the treatment of psoriasis and is recognized as the most successful antedrug of natural vitamin D(3) because it retains the original antiproliferative activity of calcitriol without increased calcemic activity. We introduced 16-olefinic functionality to accelerate the oxidative metabolism of the drug in liver, presumed to be essential for the reduction of calcemic activity, and modified the side-chain moiety by placing the 22-oxygen on the more labile allylic carbon center. Novel 22-oxa analogs (7a-i), carrying either the 24-alkynyl bond or 24-hydroxy functionality in addition to the 16-double bond were synthesized and their pharmacokinetics were evaluated.  相似文献   

15.
The effects of active vitamin D3 analogues on radial mineral content (RMC) in postmenopausal osteoporosis were examined. Seventy eight subjects with postmenopausal osteoporosis were divided into 5 groups; Group 1 (n = 23) as the control group and Group 2 (n = 27), Group 3 (n = 8), Group 4 (n = 9) and Group 5 (n = 11) which were given 1 microgram of 1, 24(R) (OH)2D3 per day, 1 microgram of 1, 24(S)(OH)2D3 per day, 0.5 and 1 microgram of 1 alpha-OHD3 per day for 6 to 24 months, respectively. After 3-months administration of these drugs, RMC values were significantly increased in Groups 2 (102.8 +/- 1.8%), 4 (103.9 +/- 3.3%) and 5 (114.2 +/- 3.6%), when compared with the controls (97.9 +/- 2.4%). RMC in Group 3 (97.9 +/- 2.4%) was not significantly different from the control value. The administration of 1 alpha-OHD3 caused in increase in RMC in a dose-related manner. A rapid decrease in RMC was observed after withdrawal of the treatment in Groups 2, 4, and 5. A subsequent increase in RMC was observed after re-administration of 1 alpha-OHD3 and 1, 24(R)(OH)2D3. Serum Ca levels were increased in the group treated with 1, 24(R)(OH)2D3 and were decreased after the discontinuation of 1 alpha-OHD3 administration. Serum A1-P activity was decreased by treatment with 1 alpha-OHD3 (1 microgram per day) and a subsequent increase was observed in both groups treated with 1, 24(R)(OH)2D3 and 1 alpha-OHD3. Serum PTH levels were decreased by the administration of 1, 24(R)(OH)2D3 and 1 alpha-OHD3. In the group treated with 1 microgram of 1 alpha-OHD3 per day, hypercalcemia (2 out of 11 cases and these patients took calcium tablets) and an increase in BUN (1 out of 2 hypercalcemic patients) were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The current understanding of the vitamin D(3) system shows skin as the unique site of vitamin D(3) production and liver is thought to be the main site of conversion to 25(OH)D(3). Skin is capable of activating 25(OH)D(3) via 1alpha-hydroxylation and the resulting 1alpha,25(OH)(2)D(3) plays a role in epidermal homeostasis in normal and diseased skin. It also rapidly up-regulates the major vitamin D(3) metabolizing enzyme 24-hydroxylase at the mRNA level, which is an established indicator for 1alpha,25(OH)(2)D(3)-presence. We investigated the capability of primary human keratinocytes to produce 25(OH)D(3) and subsequent metabolites from vitamin D(3). Thus, by orchestrating the entire system of production, activation and inactivation, skin could be independent of other organs in supply of hormonally active vitamin D(3). First, we demonstrated substantial conversion of (3)H-D(3) to (3)H-25(OH)D(3) in primary human keratinocytes. 25-Hydroxylation was slow, followed first order rate kinetics and was not saturable under our experimental conditions. Then we showed expression of 25-hydroxylase mRNA and compared it to levels of 1alpha-hydroxylase and 24-hydroxylase. Pre-incubation with vitamin D(3) resulted in dose and time dependent up-regulation of 24-hydroxylase mRNA, whereas neither 1alpha-hydroxylase nor 25-hydroxylase expression was affected. Since both, D(3) and 25(OH)D(3) are lacking intrinsic 24-hydroxylase-inducing capacity, up-regulation had to be the consequence of a two-step activation process via 25-hydroxylation and subsequent 1alpha-hydroxylation. 24-Hydroxylase-activities closely followed the corresponding mRNA levels. When 1alpha,25(OH)(2)D(3) itself or its precursor 25(OH)D(3) were used as inducing agents, 24-hydroxylase mRNA and enzyme activity followed a transient time course. In contrast, induction observed with physiological doses of D(3) remained high, even after a 20 h-time period. These differing characteristics may be explained by the slow but constant formation of 1alpha,25(OH)(2)D(3) from a large reservoir of D(3) in the target cell, providing constant supplies for induction.  相似文献   

17.
18.
19.
A major vitamin D metabolite was isolated in pure form from the blood plasma of chicks either maintenance levels or large doses of vitamin D3. The isolation involved methanol-chloroform extraction and five column chromatographic procedures. The metabolite purification and elution position on these columns were followed by a competitive protein binding assay. The metabolite was identified, using high- and low-resolution mass spectrometry, 270-MHz proton nuclear magnetic resonance spectrometry, ultraviolet absorption spectrophotometry, Fourier transform infrared spectrophotometry, and specific chemical reactions, as 3 beta,-25-dihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone. The trivial names 25-hydroxyvitamin D3 26,23-lactone or calcidiol 26,23-lactone are suggested for this compound.  相似文献   

20.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号