首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in responses to single stimulations of the cortical surface after tetanization (frequency 50/sec, duration 1–10 sec) were studied in sensorimotor cortical neurons of an unanesthetized rabbit on intracellular and "quasiintracellular" recordings. After tetanization insufficient to generate epileptiform after-discharges, an increase was observed in the amplitude and duration of exciting postsynaptic potentials (EPSP) induced by a single test stimulus. This increase is considered as post-tetanic potentiation (PTP). Its duration did not exceed 1 min. The amplitude of inhibitory postsynaptic potentials (IPSP) showed a considerably smaller increase or did not change or even decreased. The PTP increased with an increase in the strength and duration of the tetanization, reaching especially high values during tetanization sufficiently intensive to evoke epileptiform after-discharges. In this case the response to a single test stimulus was identical to an epileptiform intracellular discharge. The data obtained confirm the important role of PTP of the exciting synapses in the generation of epileptiform after-discharges. A simple model of a neuron network with exciting and inhibiting feedbacks which accounts for the generation of epileptiform activity is examined.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 601–610, November–December, 1970.  相似文献   

2.
Makii  E. A.  Rodinskii  A. G. 《Neurophysiology》2004,36(3):193-199
In albino rats, we studied the effects of long-lasting tetanization of the dorsal roots of the L 5 (homosynaptic activation) and L 4 (heterosynaptic activation) segments on reflex discharges in the L 5 ventral root evoked by single stimulation of the dorsal root of the same segment. Tetanization trains consisted of 5,000 stimuli applied with frequencies of 10, 50, 100, or 300 sec–1, and their effects were tested during 10 min. There were no long-term post-tetanic potentiation (PTP) of monosynaptic responses when low frequencies of homosynaptic tetanization (10 and 50 sec–1) were used. In the case of higher frequencies, PTP was rather clear and long-lasting. Under conditions of heterosynaptic activation, there was no PTP. Facilitation of polysynaptic responses developed at all the frequencies of homosynaptic tetanization used; when heterosynaptic tetanization was applied, such facilitation (although weaker) was also observed. In rats treated with agents increasing the excitability of spinal neuronal systems, such as thyroxine and 4-aminopyridine, tetanization of the studied inputs evoked long-term depression (LTD) of both mono- and polysynaptic components of the reflex discharges instead of PTP. Probable mechanisms of postsynaptic changes in the segmental reflex responses are discussed.  相似文献   

3.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

4.
Responses of cortical neurons in the posterior sigmoid gyrus of cats anesthetized with chloralose to electrical stimulation of somatic and visceral nerves were recorded. Bimodal viscero-somatic neurons are predominant in this part of the cortex and some of them also respond to light. Besides the polysensory modally-specific neurons it was also possible to distinguish a group of modally nonspecific cells (27%), whose responses to different stimuli did not differ statistically from each other. Simultaneous stimulation of visceral and somatic nerves led to facilitation of activity of the long-latency neurons; this was reflected in a decrease of 10 msec in the latent period of the response and an increase in the number of spikes per discharge.A. A. Zhdanov Leningrad University. Tadjik University, Dushanbe. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 574–581, November–December, 1971.  相似文献   

5.
Unit responses of the rabbit visual cortex were investigated in relation to size of visual stimuli moving in their receptive field. With an increase in size of the stimulus in a direction perpendicular to the direction of movement ("width" of the stimulus) an initial increase in the intensity of the unit response through spatial summation of excitory effects is followed by a decrease through lateral inhibition. This inhibition is observed between zones of the receptive field which behave as activating when tested by a stimulus of small size. Each neuron has its own "preferred" size of stimuli evoking its maximal activation. No direct correlation is found between the "preferred" stimulus size and the size of the receptive field. With a change in stimulus size in the direction of movement ("length" of the stimulus) the responses to stimuli of optimal size may be potentiated through mutual facilitation of the effects evoked by the leading and trailing edges of the stimulus and weakened in response to stimuli of large size. The selective behavior of the neurons with respect to stimulus size is intensified in the case of coordinated changes in their length and width. It is postulated that the series of neurons responding to stimuli of different "preferred" dimensions may constitute a system classifying stimuli by their size.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 636–644, November–December, 1972.  相似文献   

6.
Electrical stimulation (ES) at the surface of the rat brain (10–200 Hz; brief trains of 10 pulses) was found to be most effective for evoking waves of spreading depression (SD) in the cortex. Repeated stimuli spaced at 10–15 min intervals did not produce convulsive activity and nor did mechanisms of SD inhibition set in under these conditions. A 5–6-fold reduction in SD threshold occurred when the intra-burst rate was increased from 10 to 200 Hz. Temporal summation of residual processes occurring with suprathreshold ES applied at the rate of 50 and 200 Hz resulted in significant broadening of the SD focus in the ES area and regular occurrence of additional SD foci on the side ipsilateral to stimulation and in the contralateral cortex. The protracted changes in cortical excitation lingering after ES by high-frequency currents brought about a decline in SD threshold and pointed to the active part played by synaptic processes in triggering this reaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 789–796, November–December, 1989.  相似文献   

7.
Dovgalets  G. V.  Tal'nov  A. N. 《Neurophysiology》2004,36(3):207-217
We recorded electromyographic (EMG) reactions from the flexors of the elbow joint and evoked potentials (EP) from the somatic cortex (fields 3, 4, and 6) of unanesthetized cats. These reactions were elicited by perturbation of an external extensor loading applied to the arm and evoking passive extension of the elbow joint. Perturbation of the loading was performed in two modes: (i) with different fixed force moments within a 0.04–0.2 N·m range, but with a constant rate of change in this moment (3.2 N·m·sec–1), and (ii) with a constant force moment magnitude (0.2 N·m), but with different rates of change in this moment (from 0.1 to 6.4 N·m·sec–1). When the elbow joint was passively extended, an EMG response was generated in the m. biceps brachii. The amplitude of this response correlated with the amplitude of perturbation of the external loading, and the time course of the response was rather close to that of the evoked passive moment. It was possible to differentiate several (up to seven) successive components in EP recorded from the three above-mentioned cortical fields; among them, the component N(50–60) was the most stable and clearly manifested. Its amplitude did not depend on the level of external loading and decreased with a decrease in the rate of loading perturbation. The time course of the N(50–60) changed insignificantly with variation of temporal parameters of the stimulus and of the evoked movement. We conclude that the spinal level and the cortical level responsible for formation of the stretch reflex differ significantly from each other in their functional roles. Reactions of the spinal level (which could be characterized by changes in EMG) are to a greater extent related to a change in the position of the limb link, while reactions of the cortical level (EP) are determined by the arrival of information about changes in the forces applied to the joint. Neurons of the somatic cortex, which are excited in the course of the stretch reflex, cannot be considered the main source responsible for generation of the M2 component of the myographic response. It is supposed that the cortical level predetermines the formation of non-reflex motor commands related to motor reflexes closed in the somatic brain cortex.  相似文献   

8.
Changes in the extracellular potassium ion concentration ([K+]0) of the suprasylvian gyrus of the cat cortex were recorded by potassium-selective microelectrodes; the electric field potential was recorded at the same time. Under deep anesthesia one electrical stimulus, of sufficient intensity to induce a slow negative potential when applied to the cortical surface, evoked a local increase in [K+]0 by 0.1–1.5 mM. The time course of this rise was very similar to that of the slow negative potential. It is suggested that this potential reflects glial depolarization under the influence of K+ ions.I.S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Institute of Physiology, Czechoslovak Academy of Sciences, Prague. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 459–463, September–October, 1980.  相似文献   

9.
The influence of iontophoretic application of glutamate and its blockers on the impulse activity of neurons of the sensorimotor cortex, associated with conditioned reflex activity, was investigated in chronic experiments on trained cats. It was established that in many neurons glutamate promoted an intensification of the impulse reactions to the conditioned stimulus. This intensification arose directly during the application of glutamate, several seconds after it was begun, and was maintained for 5–10 min after iontophoresis ceased. Similar inhibiting effects on neuronal reactions were demonstrated for 2-amino-5-phosphonovaleric acid, kinurenate, and ketamine. It was concluded that under natural conditions of functioning or the performance of acquired reactions, facilitation of intracortical interneuronal glutamatergic connections, providing for increased readiness of the neocortex for subsequent reactions, is systematically maintained in the cerebral cortex through the NMDA receptors. During the reactions the glutamatergic connections are intensively activated and participate negligibly in the organization of the background activity of the neurons.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 701–712, November–December, 1992.  相似文献   

10.
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed.  相似文献   

11.
The dynamics of thermal diffusion from the dorsal brain surface were studied in white rats through the intact skull during acute experiments on immobilized or Nembutal anesthetized white rats using a new thermovisualization technique involving direct electrical stimulation of the cortex. Local cortical heating of a 1–4 mm site in the vicinity of the electrodes set in within 160 msec after presentation of a single stimulus, reaching a maximum of 0.2°C by the 2nd-5th sec and slowly decaying to the initial level by the 2nd-3rd min. At the same time, but at a somewhat slower rate, the symmetrically opposite local site in the other hemisphere heated up, followed by a small area in the ipsilateral motor cortex and a number of other zones. Depending on the dose administered, Nembutal inhibits and decelerates the development of these effects and localizes them, raises the minimum threshold of their occurrence, and prolongs their closed state. As anesthesia deepened, the primary heat focus near the stimulating electrodes persisted the longest. The mechanisms underlying local cortical thermal responses and the time parameters of these are discussed and compared with those of the dynamics of standard electrographic effects.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 216–223, March–April, 1987.  相似文献   

12.
In acute experiments on unanesthetized, curarized cats and rabbits and also on animals anesthetized with chloralose, recordings were made of direct cortical and transcallosal responses, responses in the pyramids of the medulla to peripheral stimulation and stimulation of the motor cortex, primary responses in area S-I, and interzonal somatomotor responses. The effect of narcotics on these cortical responses was shown to persist under conditions partially or completely excluding effects mediated through the reticular formation and other subcortical structures (intracarotid injection of the drugs or their local application to the cortex, experiments after premesencephalic section or on the isolated cortex). Neuroleptics have only a slight effect on these cortical evoked responses, mainly due to their blocking action on the reticular formation. Tranquilizers of the benzodiazepine series are active against the cortical responses studied, and this effect is due to their direct action on the cortex.Institute of Pharmacology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 582–591, November–December, 1971.  相似文献   

13.
Background and evoked neuronal activity in the cat sensorimotor cortex was recorded under a-chloralose anesthesia. Pairs of heterogeneous stimuli were applied, spaced at intervals of 0, 100, 200, 300, and 400 msec. A clicking sound, flashing light, and electroshock to the contralateral forepaw were used as stimuli. Partial or complete blockade of response to test stimuli presentations spaced 100–200 msec apart were observed when using stimulation of varying modality. The greatest test response was recorded at interstimulus intervals of 200–300 msec. Intracellular mechanisms of heterosensory interaction were investigated by applying the inhibitory transmitter antagonist picrotoxin microiontophoretically to the test cell to produce local attenuation of inhibitory effects. This substance also reduced the duration of blockage following the conditioning stimulus and the occurrence of peak level test response at a lower interstimulus interval than in the controls. Either a consistent increase in the number of spikes per response at one of the interstimulus intervals or a uniform reinforcement in unit response to several different interstimulus intervals were observed in a proportion of the cells. The contribution of intracortical inhibitory influences to the mechanisms of heterosensory interaction on neurons of the cat sensorimotor cortex is discussed in the light of our findings.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 147–156, March–April, 1987.  相似文献   

14.
Experimental results indicating a limited and indirect dependence of the amplitudes of the first two phases of the primary response (PR) of the cat auditory cortex on the information content of the stimulus are described. The PR amplitude is slightly reduced during the action of positive acoustic stimuli. This is due, primarily, to activation of the EEG in response to positive stimuli, for a similar decrease in amplitude of the cortical PR against the background of an activated EEG is also observed to fine differential stimuli. No PRs to acoustic stimulation are found in the sensomotor cortex either before or after motor-food conditioning; they are recorded only in the auditory projection zone. The amplitude of the PRs falls regularly during fast (25–30/min) and prolonged repetitive acoustic stimulation, and the rate of fall is greater when the interval between stimuli is shortened. The appearance of PRs of high amplitude in response to infrequent stimuli of whatever quality indicates that these responses are dependent on a component of the orienting reaction. It is concluded that the role of the first two phases of the PR as an indicator of fine analysis of information by the brain is limited.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 423–428, July–August, 1970.  相似文献   

15.
Recovery curves of evoked potentials in the association and visual cortex during paired stimulation of the pulvinar in chronic experiments on alert cats were shown to be similar in character. Depression of the test response was observed only if the interval between stimuli was of the order of 10 msec, but if it was 40 msec considerable (2–4 times) facilitation of the second response was observed, mainly on account of an increase in the negative component N1. Facilitation was less marked if the intervals were from 60 to 100 msec, and they decreased gradually to an interval of 200 msec. The recovery curve of cortical evoked potentials during paired stimulation of the lateral geniculate body differed considerably from the recovery curve during paired stimulation of the pulvinar and was characterized by a gradual increase in amplitude of the second response — from its almost total suppression with an interval of 10 msec to slight facilitation with an interval of 200 msec. If intervals of 10 to 80 msec were used, the test response was restored more slowly in the association cortex than in the visual cortex. The results are discussed from the standpoint of differences in the character of intracortical spread of excitation as a result of activation of geniculo-cortical and pulvinar-cortical pathways of conduction of information.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 497–505, July–August, 1984.  相似文献   

16.
In acute experiments on cats anesthetized with chloralose and nembutal interaction between visual, auditory, and electrodermal stimuli in neurons of the parietal association cortex was studied. Two types of interaction were found; the first characterized by inhibition or by inhibition followed by facilitation of the response to the test stimulus, the second by facilitation or by facilitation followed by inhibition of spontaneous impulses. Interaction between stimuli of different modalities was shown to depend on the properties of the neuron. In polysensory neurons ability to interact was much higher than in bimodal or monomodal neurons.M. Gorkii Donetsk Medical Institute. Kemerovo Medical Institute. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 223–229, May–June, 1976.  相似文献   

17.
The effect of stimulation of cortical association (orbito-frontal, parietal) and projection (auditory, sensomotor) areas on the activity of Purkinje neurons of the cerebellar cortex was studied in adult cats anesthetized with pentobarbital, with or without chloralose. These responses were compared with those to peripheral stimuli. Definite similarity was found between the responses of Purkinje cells to different cortical (association and projection) stimuli as regards both the types of responses of the neurons and their ability to respond. No similarity was observed in the responses of Purkinje cells to peripheral (visual, auditory, electrodermal) stimulation. Whereas almost identical numbers of neurons (over 50%) were excited in response to the different forms of cortical stimulation, the ability of the neurons to respond to peripheral stimuli differed considerably: 44.6% of neurons responded to electrodermal stimulation, 34.2% to auditory, and 18.8% to visual.Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 483–489, September–October, 1976.  相似文献   

18.
Receptive fields of auditory cortical neurons were studied by electrical stimulation of nerve fibers in different parts of the cochlea in cats anesthetized with pentobarbital. The dimensions of the receptive fields were shown to depend on the topographic arrangement of the neuron in the auditory cortex. The more caudad the neuron on the cortical projection of the cochlea in the primary auditory cortex, the more extensive its receptive field. The receptive fields were narrowest in the basal turn of the cochlea and were symmetrical with respect to their center. It is suggested that the region of finest discrimination of acoustic stimuli in cats is located in the basal region of the cochlea, i.e., in that part of its receptor system which has the narrowest receptive field and is represented by significantly more (than the middle and apical regions of the cochlea) nerve cells in the primary auditory cortex [1].A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 467–473, September–October, 1981.  相似文献   

19.
In an experiment on albino rats with electrodermal stimulation of the forepaw evoked potentials (EP) in the neostriatum (NS), the cortical primary response (PR), and impulse reactions of neurons (mainly of layers V and VI of the cortex) were recorded. The zone of leading-off of the potentials in the cortex was subjected to local surface cooling, which led to an increase in the PR amplitude. This facilitation was accompanied by a change in the time parameters of the impulse reactions of the cortical neurons: the latency and duration increased, and a rhythmic organization of activity appeared or intensified (if it was already present). The increase in the PR amplitude and number of spikes in the response of the cortical neurons to stimulus presentation was far less intensive than the sharp increase in EP amplitude in the NS, and did not correspond to it fully in time. The data suggest that the activating influence of the corticofugal signal on EP in the NS is determined not so much by the intensity of the descending signal as by its temporal organization.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 181–189, March–April, 1991.  相似文献   

20.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号