首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Placental hormones are produced by one genetic individual (the fetus) to act on the receptors of another genetic individual (the mother). Mothers are probably able to extract some information from placental hormones, but this information may be limited to a crude measure of fetal vigor. Placental hormones are most easily interpreted as fetal attempts to manipulate maternal metabolism for fetal benefit. An evolutionary model is presented for a hypothetical hormone that increases the nutrient content of maternal blood. The model predicts that, at an evolutionary equilibrium, the hormone will be produced solely by the mother or solely by the placenta, but not by both. If the gene for the hormone is subject to genomic imprinting, the paternally-derived allele will be active and the maternally-derived allele will be silent. Hormone production benefits the members of the mother's current litter at some cost to future litters. Therefore, paternity changes between litters increase the level of hormone production. On the other hand, offspring that produce less of the hormone than litter-mates share the benefits but have lower costs. Therefore, multiple paternity within litters reduces the level of hormone production.  相似文献   

2.
3.
The existence of parentally imprinted gene expression in the somatic tissues of mammals and plants can be explained by a theory of intragenomic genetic conflict, which is a logical extension of classical parent-offspring conflict theory. This theory unites conceptually the phenomena of autosomal imprinting and X-chromosome inactivation. We argue that recent experimental studies of X-chromosome inactivation and andro-genetic development address previously published predictions of the conflict theory, and we discuss possible explanations for the occurrence of random X-inactivation in the somatic tissues of eutherians. © 1995 Wiley-Liss, Inc.  相似文献   

4.
H G Spencer  A G Clark 《Heredity》2014,113(2):112-118
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.  相似文献   

5.
When genes in the offspring control the provisioning of the seed, the optimal seed size can be calculated exactly by applying Hamilton's rule. When seed size is a compromise between mother and offspring, we predict that outcrossing plant species produce larger seeds than selfers. This trend was found in the British flora and in a number of well-studied plant families. The analysis was extended to imprinting, a conditional strategy in which a gene in the offspring takes more resources when derived from the father than from the mother. The conditions for imprinting to be selected were rather restrictive. The analysis is relevant for the current debate about the evolution of imprinting in Arabidopsis thaliana.  相似文献   

6.
7.
8.
9.
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader‐Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith‐Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted‐gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively‐slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.  相似文献   

10.
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent‐of‐origin specific gene expression—or “genomic imprinting”—may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal‐origin and paternal‐origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which—as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic—may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.  相似文献   

11.
In mammals, some embryonic genes are expressed differently depending on whether they are inherited from the sperm or egg, a phenomenon known as genomic imprinting. The information on the parental origin is transmitted by an epigenetic mark. Both the molecular mechanisms and evolutionary processes of genomic imprinting have been studied extensively. Here, I illustrate the simplest evolutionary dynamics of imprinting evolution based on the “conflict theory,” by considering the evolution of a gene encoding an embryonic growth factor controlling the maternal resource supply. It demonstrates that (a) the autosomal genes controlling placenta development to modify maternal resource acquisition may evolve a strong asymmetry of gene expression, provided the mother has some chance of accepting multiple males. (b) The genomic imprinting may not evolve if there is a small fraction of recessive deleterious mutations on the gene. (c) The growth-enhancing genes should evolve to paternally expressed, while the growth-suppressing genes should evolve to maternally expressed. (d) The X-linked genes also evolve genomic imprinting, but the main evolutionary force is the sex difference in the optimal embryonic size. I discuss other aberrations that can be explained by the modified versions of the basic model.  相似文献   

12.
Population-genetic models are developed to investigate the consequences of viability selection at a diallelic X-linked locus subject to genomic imprinting. Under complete paternal-X inactivation, a stable polymorphism is possible under the same conditions as for paternal-autosome inactivation with differential selection on males and females. A necessary but not sufficient condition is that there is sexual conflict, with selection acting in opposite directions in males and females. In contrast, models of complete maternal-X inactivation never admit a stable polymorphism and alleles will either be fixed or lost from the population. Models of complete paternal-X inactivation are more complex than corresponding models of maternal-X inactivation, as inactivation of paternally derived X chromosomes in females screens these chromosomes from selection for a generation. We also demonstrate that polymorphism is possible for incomplete X inactivation, but that the parameter conditions are more restrictive than for complete paternal-X inactivation. Finally, we investigate the effects of recurrent mutation in our models and show that deleterious alleles in mutation–selection balance at imprinted X-linked loci are at frequencies rather similar to those with corresponding selection pressures and mutation rates at unimprinted loci. Overall, our results add to the reasons for expecting less selectively maintained allelic variation on X chromosomes.  相似文献   

13.
14.
15.
Relative to the life history of other great apes, that of humans is characterized by early weaning and short interbirth intervals (IBIs). We propose that in modern humans, birth until adrenarche, or the rise in adrenal androgens, developmentally corresponds to the period from birth until weaning in great apes and ancestral hominins. According to this hypothesis, humans achieved short IBIs by subdividing ancestral infancy into a nurseling phase, during which offspring fed at the breast, and a weanling phase, during which offspring fed specially prepared foods. Imprinted genes influence the timing of human weaning and adrenarche, with paternally expressed genes promoting delays in childhood maturation and maternally expressed genes promoting accelerated maturation. These observations suggest that the tempo of human development has been shaped by consequences for the fitness of kin, with faster development increasing maternal fitness at a cost to child fitness. The effects of imprinted genes suggest that the duration of the juvenile period (adrenarche until puberty) has also been shaped by evolutionary conflicts within the family.  相似文献   

16.
In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density.  相似文献   

17.
While many cases in which conflict over the evolution of social behavior exists even between closely related individuals (e.g., parent-offspring conflict) have been pointed out, little attention has been paid on the problem of where such conflict should lead. A general theory of conflict resolution, however, has recently been developed. The key idea of the theory is the incorporation of conflict costs in the inclusive fitness evaluation. The theory shows that if both sides engaged in the conflict can potentially control the other at a cost, the coevolutionary game of escalating the fight with increased conflict costs always leads either side to give in to the other, resolving the conflict. Here we examine the logical basis of the theory in terms of a simplest example, donor-recipient conflict over the evolution of altruism, and to show its different types of application we review two more specific examples: reproductive-worker conflict over true (sterile) worker evolution in termites and insider-outsider conflict over group size determination. The latter exemplifies the resolution of conflict over the value of a variable (group size in this case) rather than a behavior, suggesting extended applicability of the basic theory.  相似文献   

18.
The X chromosome is found twice as often in females as males. This has led to an intuition that X‐linked genes for traits experiencing sexually antagonistic selection should tend to evolve toward the female optimum. However, this intuition has never been formally examined. In this paper, I present a simple mathematical model and ask whether the X chromosome is indeed biased toward effecting female‐optimal phenotypes. Counter to the intuition, I find that the exact opposite bias exists; the X chromosome is revealed to be a welcome spot for mutations that benefit males at the expense of females. Not only do male‐beneficial alleles have an easier time of invading and spreading through a population, but they also achieve higher equilibrium frequencies than comparable female‐beneficial alleles. The X chromosome is therefore expected over evolutionary time to nudge phenotypes closer to the male optimum. Consequently, the X chromosome should find itself engaged in perpetual intragenomic conflicts with the autosomes and the mitochondria over developmental outcomes. The X chromosome's male bias and the intragenomic conflicts that ensue bear on the evolution of gene regulation, speciation, and our concept of organismality.  相似文献   

19.
The genetic systems of animals and plants are typically eumendelian. That is, an equal complement of autosomes is inherited from each of two parents, and at each locus, each parent's allele is equally likely to be expressed and equally likely to be transmitted. Genetic systems that violate any of these eumendelian symmetries are termed asymmetric and include parent-specific gene expression (PSGE), haplodiploidy, thelytoky, and related systems. Asymmetric genetic systems typically arise in lineages with close associations between kin (gregarious siblings, brooding, or viviparity). To date, different explanatory frameworks have been proposed to account for each of the different asymmetric genetic systems. Haig's kinship theory of genomic imprinting argues that PSGE arises when kinship asymmetries between interacting kin create conflicts between maternally and paternally derived alleles. Greater maternal than paternal relatedness within groups selects for more "abstemious" expression of maternally derived alleles and more "greedy" expression of paternally derived alleles. Here, I argue that this process may also underlie origins of haplodiploidy and many origins of thelytoky. The tendency for paternal alleles to be more "greedy" in maternal kin groups means that maternal-paternal conflict is not a zero-sum game: the maternal optimum will more closely correspond to the optimum for family groups and demes and for associated entities such as symbionts. Often in these circumstances, partial or complete suppression of paternal gene expression will evolve (haplodiploidy, thelytoky), or other features of the life cycle will evolve to minimize the conflict (monogamy, inbreeding). Maternally transmitted cytoplasmic elements and maternally imprinted nuclear alleles have a shared interest in minimizing agonistic interactions between female siblings and may cooperate to exclude the paternal genome. Eusociality is the most dramatic expression of the conflict-reducing effects of haplodiploidy, but its original and more widespread function may be suppression of intrafamilial cannibalism. In rare circumstances in which paternal gene products gain access to maternal physiology via a placenta, PSGE with greedy paternal gene expression can persist (e.g., in mammals).  相似文献   

20.
The behavior of offspring results from the combined expression of maternal and paternal genes. Genomic imprinting silences some genes in a parent-of-origin specific manner, a process that, among all animals, occurs only in mammals. How genomic imprinting affects the behavior of mammalian offspring, however, remains poorly understood. Here, we studied how the loss of the paternally inherited gene Magel2 in mouse pups affects the emission of separation-induced ultrasonic vocalizations (USV). Using quantitative analysis of more than 1000 USVs, we characterized the rate of vocalizations as well as their spectral features from postnatal days 6–12 (P6–P12), a critical phase of mouse development that covers the peak of vocal behavior in pups. Our analyses show that Magel2 deficient offspring emit separation-induced vocalizations at lower rates and with altered spectral features mainly at P8. We also show that dams display altered behavior towards their own Magel2 deficient offspring at this age. In a test to compare the retrieval of two pups, dams retrieve wildtype control pups first and faster than Magel2 deficient offspring. These results suggest that the loss of Magel2 impairs the expression of separation-induced vocalization in pups as well as maternal behavior at a specific age of postnatal development, both of which support the pups' growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号