首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The chemistry of the lowland rice rhizosphere   总被引:1,自引:1,他引:0  
Kirk  G. J. D.  Begg  C. B. M.  Solivas  J. L. 《Plant and Soil》1993,155(1):83-86
Models and experimental studies of the rhizosphere of rice plants growing in anaerobic soil show that two major processes lead to considerable acidification (1–2 pH units) of the rhizosphere over a wide range of root and soil conditions. One is generation of H+ in the oxidation of ferrous iron by O2 released from the roots. The other is release of H+ from roots to balance excess intake of cations over anions, N being taken up chiefly as NH4 +. CO2 exchange between the roots and soil has a much smaller effect. The zone of root-influence extends a few mm from the root surface. There are substantial differences along the root length and with time. The acidification and oxidation cause increased sorption of NH4 + ions on soil solids, thereby impeding the movement of N to absorbing root surfaces. But they also cause solubilization and enhanced uptake of soil phosphate.  相似文献   

2.
Kirk  G.J.D. 《Plant and Soil》2001,232(1-2):129-134
The ways in which root–soil interactions can control nutrient acquisition by plants is illustrated by reference to the N nutrition of rice. Model calculations and experiments are used to assess how uptake is affected by root properties and N transport through the soil. Measurements of the kinetics of N absorption and assimilation and their regulation, and of interactions between NH4 + and NO3 nutrition, are described. It is shown that uptake of N from the soil–-as opposed to N in ricefield floodwater which can be absorbed very rapidly but is otherwise lost by gaseous emission–-will often be limited by root uptake properties. Rice roots are particularly efficient in absorbing and assimilating NO3 , and NH4 + absorption and assimilation are stimulated by NO3 . The uptake of NO3 formed in the rice rhizosphere by root-released O2 may be more important than previously thought, with beneficial consequences for rice growth. Other root-induced changes in the rice rhizosphere and their consequences are discussed.  相似文献   

3.
As a major antioxidant in plants, ascorbic acid (AsA) plays a very important role in the response to aluminum (Al) stress. However, the effect of AsA on the mitigation of Al toxicity and the mechanism of nitrate nitrogen (NO3 ?–N) uptake by plants under Al stress are unclear. In this study, a hydroponic experiment was conducted using peak 1 A rice (sterile line, Indica) with weaker resistance to Al and peak 1 superior 5 rice (F1 hybrid, Indica) with stronger resistance to Al to study the effects of exogenous AsA on the physiological and biochemical responses to NO3 ?–N uptake by rice roots exposed to 50 μmol L?1 Al. Al stress induced increases in the concentrations of H2O2 and malondialdehyde (MDA) and in the activities of antioxidant enzymes [such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)]. Plasma membrane (PM) H+-ATPase and H+-pump activities, endogenous AsA content and NO3 ?–N uptake in rice roots decreased under Al stress. After treatment with 2 mmol L?1 exogenous AsA combined with Al, concentrations of H2O2 and MDA in roots notably decreased, and endogenous AsA content and activities of SOD, POD, CAT, and APX in rice roots increased significantly; furthermore, the interaction of PM H+-ATPase and the 14-3-3 protein was also enhanced significantly compared with that in control plants without AsA treatment, which clearly increased NO3 ?–N uptake. Based on all of these data, the application of AsA significantly reduced the accumulation of H2O2 and MDA and increased the activities of PM H+-ATPase and the H+-pump by increasing the endogenous AsA content, the antioxidant enzyme activities, and the interaction of PM H+-ATPase and the 14-3-3 protein in the roots of the two rice cultivars under Al stress, thereby improving the uptake of NO3 ?–N in rice.  相似文献   

4.
5.
Root exudates as mediators of mineral acquisition in low-nutrient environments   总被引:39,自引:3,他引:36  
Plant developmental processes are controlled by internal signals that depend on the adequate supply of mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major constraint to plant growth in many environments of the world, especially the tropics where soils are extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where micro-organisms interact with plant products in root exudates. Plant root exudates consist of a complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, inorganic ions (e.g. HCO3 , OH, H+), gaseous molecules (CO2, H2), enzymes and root border cells which have major direct or indirect effects on the acquisition of mineral nutrients required for plant growth. Phenolics and aldonic acids exuded directly by roots of N2-fixing legumes serve as major signals to Rhizobiaceae bacteria which form root nodules where N2 is reduced to ammonia. Some of the same compounds affect development of mycorrhizal fungi that are crucial for phosphate uptake. Plants growing in low-nutrient environments also employ root exudates in ways other than as symbiotic signals to soil microbes involved in nutrient procurement. Extracellular enzymes release P from organic compounds, and several types of molecules increase iron availability through chelation. Organic acids from root exudates can solubilize unavailable soil Ca, Fe and Al phosphates. Plants growing on nitrate generally maintain electronic neutrality by releasing an excess of anions, including hydroxyl ions. Legumes, which can grow well without nitrate through the benefits of N2 reduction in the root nodules, must release a net excess of protons. These protons can markedly lower rhizosphere pH and decrease the availability of some mineral nutrients as well as the effective functioning of some soil bacteria, such as the rhizobial bacteria themselves. Thus, environments which are naturally very acidic can pose a challenge to nutrient acquisition by plant roots, and threaten the survival of many beneficial microbes including the roots themselves. A few plants such as Rooibos tea (Aspalathus linearis L.) actively modify their rhizosphere pH by extruding OH and HCO3 to facilitate growth in low pH soils (pH 3 – 5). Our current understanding of how plants use root exudates to modify rhizosphere pH and the potential benefits associated with such processes are assessed in this review.  相似文献   

6.
M. J. Kropff 《Plant and Soil》1991,131(2):235-245
The impact of SO2 on the ionic balance of plants and its implications for intracellular pH regulation was studied to find explanations for long-term effects of SO2. When sulphur, taken up as SO2 by the shoots of plants, is not assimilated in organic compounds, but stored as sulphate, an equivalent amount of H+ is produced. These H+ ions are not buffered chemically, but removed by metabolic processes.On the basis of knowledge on metabolic buffering mechanisms a conceptual model is proposed for the removal of shoot-generated H+ by (i) OH- ions, produced in the leaves when sulphate and nitrate are assimilated in organic compounds and/or by (ii) OH- ions produced by decarboxylation of organic anions (a biochemical pH stat mechanism). The form in which nitrogen is supplied largely determines the potential of the plant to neutralize H+ in the leaves during SO2 uptake by the proposed mechanisms.In field experiments with N2 fixing Vicia faba L. crops, the increase of sulphate in the shoots of SO2-exposed plants was equivalent in charge to the decrease of organic anion content, calculated as the difference between inorganic cation content (C) and inorganic anion content (A), indicating that H+ ions produced in the leaves following SO2 uptake were partly removed by OH- from sulphate reduction and partly by decarboxylation of organic anions.The appearance of chronic SO2 injury (leaf damage) in the field experiment at the end of the growing period is discussed in relation to the impact of SO2 on the processes involved in regulation of intracellular pH. It is proposed that the metabolic buffering capacity of leaf cells is related to the rates of sulphate and nitrate reduction and the import rate of organic anions, rather than to the organic anion content in the vacuoles of the leaf cells.  相似文献   

7.
The aim of the present review is to define the various origins of root-mediated changes of pH in the rhizosphere, i.e., the volume of soil around roots that is influenced by root activities. Root-mediated pH changes are of major relevance in an ecological perspective as soil pH is a critical parameter that influences the bioavailability of many nutrients and toxic elements and the physiology of the roots and rhizosphere microorganisms. A major process that contributes root-induced pH changes in the rhizosphere is the release of charges carried by H+ or OH to compensate for an unbalanced cation–anion uptake at the soil–root interface. In addition to the ions taken up by the plant, all the ions crossing the plasma membrane of root cells (e.g., organic anions exuded by plant roots) should be taken into account, since they all need to be balanced by an exchange of charges, i.e., by a release of either H+ or OH. Although poorly documented, root exudation and respiration can contribute some proportion of rhizosphere pH decrease as a result of a build-up of the CO2 concentration. This will form carbonic acid in the rhizosphere that may dissociate in neutral to alkaline soils, and result in some pH decrease. Ultimately, plant roots and associated microorganisms can also alter rhizosphere pH via redox-coupled reactions. These various processes involved in root-mediated pH changes in the rhizosphere also depend on environmental constraints, especially nutritional constraints to which plants can respond. This is briefly addressed, with a special emphasis on the response of plant roots to deficiencies of P and Fe and to Al toxicity. Finally, soil pH itself and pH buffering capacity also have a dramatic influence on root-mediated pH changes.  相似文献   

8.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

9.
Steady-state rates of potassium ion and sodium ion absorption by excised barley roots accompanied by various anions were compared with the rates of anion absorption and the concomitant H+ and base release by the roots. The cation absorption rates were found to be independent of the identities, concentrations, and rates of absorption of the anions of the external solution, including bicarbonate. Absorption of the anion of the salt plus bicarbonate could not account for the cation absorption. H+ is released during cation absorption and base during anion absorption. The magnitude by which one or the other predominates depends on the relative rates of anion and cation absorption under various conditions of pH, cation and anion concentration, and inhibitor concentrations. The conclusion is that potassium and sodium ions are absorbed independently of the anions of the absorption solution in exchange for H+, while anions are exchanged for a base. The H+ release reflects a specificity between K+ and Na+ absorption such that it appears to be H+ exchanged in the specific rate-limiting reactions of the cation absorption.  相似文献   

10.
The plasma membrane (PM) H+ ATPase is involved in the plant response to nutrient deficiency. However, adaptation of this enzyme in monocotyledon plants to phosphorus (P) deficiency lacks direct evidence. In this study, we detected that P deficient roots of rice (Oryza Sativa L.) could acidify the rhizosphere. We further isolated the PM from rice roots and analyzed the activity of PM H+ ATPase. In vitro, P deficient rice roots showed about 30% higher activity of PM H+ ATPase than the P sufficient roots at assay of pH 6.0. The P deficiency resulted in a decrease of the substrate affinity value (K m ) of PM H+ ATPase. The proton pumping activity of membrane vesicles from the P deficient roots was about 70% higher than that from P sufficient roots. Western blotting analysis indicated that higher activity of PM H+ ATPase in P deficient roots was related to a slightly increase of PM H+ ATPase protein abundance in comparison with that in P sufficient roots. Taken together, our results demonstrate that the P deficiency enhanced activities of both PM H+-ATPase and H+ pump, which contributed to the rhizosphere acidification in rice roots.  相似文献   

11.
Phosphate transport in plants   总被引:19,自引:5,他引:14  
Smith  Frank W.  Mudge  Stephen R.  Rae  Anne L.  Glassop  Donna 《Plant and Soil》2003,248(1-2):71-83
Transport of inorganic phosphate (Pi) through plant membranes is mediated by a number of families of transporter proteins. Studies on the topology, function, regulation and sites of expression of the genes that encode the members of these transporter families are enabling roles to be ascribed to each of them. The Pht1 family, of which there are nine members in the Arabidopsis genome, includes proteins involved in the uptake of Pi from the soil solution and the redistribution of Pi within the plant. Members of this family are H2PO4 /H+ symporters. Most of the genes of the Pht1 family that are expressed in roots are up-regulated in P-stressed plants. Two members of the Pht1 family have been isolated from the cluster roots of white lupin. These same genes are expressed in non-cluster roots. The evidence available to date suggests that there are no major differences between the types of transport systems that cluster roots and non-cluster roots use to acquire Pi. Differences in uptake rates between cluster and non-cluster roots can be ascribed to more high-affinity Pi transporters in the plasma membranes of cluster roots, rather than any difference in the characteristics of the transporters. The efficient acquisition of Pi by cluster roots arises primarily from their capacity to increase the availability of soil Pi immediately adjacent to the rootlets by excretion of carboxylates, protons and phosphatases within the cluster. This paper reviews Pi transport processes, concentrating on those mediated by the Pht1 family of transporters, and attempts to relate those processes involved in Pi acquisition to likely Pi transport processes in cluster roots.  相似文献   

12.
Nitrogen transformations were studied in flooded and non-flooded vertical flow columns with and without a rice plant. Influent (average concentration: NH4+-N: 40 mg L?1; NO3?-N: 0.15 mg L?1; and NO2?-N: 4.0 mg L?1) was supplied at 1.25 cm d?1 during stage 1 (20 May–5 August) and at 2.50 cm d?1 at stage 2 (6 August–26 October), which resulted in an average nitrogen loading of 156 g m?2 during the entire experimental period. Total nitrogen (T-N) removal efficiencies exceeded 90% in vertical flow systems with rice plants. Nitrogen assimilated by the rice plants in the flooded column accounted for 60% of the total input nitrogen, while that in the non-flooded column accounted for 36% of the total input. The remaining nitrogen appeared to be removed through biogeochemical pathways. Although some nitrogen flowed out, most input nitrogen was also removed even in the flooded and non-flooded unplanted columns.A high-resolution vertical distribution investigation showed the changes of nitrogen forms in soil water. In the flooded condition, there were high ammonium and high nitrite concentrations in the upper layers. The concentrations of ammonium and nitrite simultaneously decreased with depth increasing, suggesting that anaerobic ammonia oxidation (anammox) may occur in these anaerobic conditions. In contrast, the distributions of nitrogen in the non-flooded columns with elevated water level suggested that nitrification–denitrification route was the major removal mechanism, whether or not rice plants were present.  相似文献   

13.
Soil flooding damages shoot systems by inhibiting root functioning. An example is the inhibition of water uptake brought about by decreased root hydraulic conductance. The extent of any resulting foliar dehydration this causes is limited by partial stomatal closure that begins within 4 h and is maintained for several days. Root to shoot signals that promote closure in flooded tomato plants have remained elusive but may include changes in solute delivery to the shoot by transpiration. Accordingly, we examined total osmolites and selected mineral ions in samples of xylem sap flowing at rates approximating whole plant transpiration. After 2.5 h flooding,delivery of total osmolites and of PO4 3-SO4 2-Ca2+K+NO3 and H+strongly decreased while Na+ remained excluded. Several hours later, deliveries of osmolites, PO4 3-, SO4 2-, Ca2+, and Na+ rose above control values, suggesting that, after approximately 10 h, root integrity became degraded and solute uptake de-regulated. Deliveries of NO3 remained below control values. Reducing or eliminating the supply of K+ to detached leaves to test the potential of decreased K+ delivery to close stomata proved negative. Decrease in H+ delivery was associated with sap alkalisation. However, raising the pH of buffer from 6.0 or 6.5 to 7.0 did not close stomata when tested in the presence of abscisic acid (ABA) at a concentration (10 mol m–3) typical of the transpiration stream of flooded plants. It is concluded that despite their rapidity and scale, negative messages in the form of increased pH and decreased solute delivery from roots to shoots are, themselves, unlikely initiators of stomatal closure in flooded tomato plants.  相似文献   

14.
Mechanisms of sodium uptake by roots of higher plants   总被引:3,自引:0,他引:3  
The negative impact of soil salinity on agricultural yields is significant. For agricultural plants, sensitivity to salinity is commonly (but not exclusively) due to the abundance of Na+ in the soil as excess Na+ is toxic to plants. We consider reducing Na+ uptake to be the key, as well as the most efficient approach, to control Na+ accumulation in crop plants and hence to improve their salt resistance. Understanding the mechanism of Na+ uptake by the roots of higher plants is crucial for manipulating salt resistance. Hence, the aim of this review is to highlight and discuss recent advances in our understanding of the mechanisms of Na+ uptake by plant roots at both physiological and molecular levels. We conclude that continued efforts to investigate the mechanisms of root Na+ uptake in higher plants are necessary, especially that of low-affinity Na+ uptake, as it is the means by which sodium enters into plants growing in saline soils.  相似文献   

15.
16.
Previously the growth of Spartina alterniflora has been found to be limited by nitrogen and correlated with sediment redox potential. In this study we have investigated a possible connection between these two factors. We have found that internal O2 transport is insufficient to saturate NH4+ uptake in short S. alterniflora in hydroponic culture. Rates of NH4+ uptake and root respiration were very sensitive to O2 concentration in the rhizosphere, saturating at about 5% O2. Ammonium uptake continued at a reduced rate for at least 4 hr under anaerobic conditions. Plant to plant variations in anaerobic rates of NH4+ uptake and root respiration were significantly correlated to the diffusion rate of CH4 tracer gas from the leaves to the roots of individual plants.  相似文献   

17.
Poplar plants are cultivated as woody crops, which are often fertilized by addition of ammonium (NH4 +) and/or nitrate (NO3 ?) to improve yields. However, little is known about net NH4 +/NO3 ? fluxes and their relation with H+ fluxes in poplar roots. In this study, net NH4 +/NO3 ? fluxes in association with H+ fluxes were measured non-invasively using scanning ion-selective electrode technique in fine roots of Populus popularis. Spatial variability of NH4 + and NO3 ? fluxes was found along root tips of P. popularis. The maximal net uptake of NH4 + and NO3 ? occurred, respectively, at 10 and 15 mm from poplar root tips. Net NH4 + uptake was induced by ca. 48 % with provision of NO3 ? together, but net NO3 ? uptake was inhibited by ca. 39 % with the presence of NH4 + in poplar roots. Furthermore, inactivation of plasma membrane (PM) H+-ATPases by orthovanadate markedly inhibited net NH4 +/NO3 ? uptake and even led to net NH4 + release with NO3 ? co-provision. Linear correlations were observed between net NH4 +/NO3 ? and H+ fluxes in poplar roots except that no correlation was found between net NH4 + and H+ fluxes in roots exposed to NH4Cl and 0 mM vanadate. These results indicate that root tips play a key role in NH4 +/NO3 ? uptake and that net NH4 +/NO3 ? fluxes and the interaction of net fluxes of both ions are tightly associated with H+ fluxes in poplar roots.  相似文献   

18.
19.
Transient and NH4+-inducible accumulation of the mRNA for NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in the roots of rice seedlings was analyzed in situ to identify the cell types responsible for the induction. The mRNA was detected specifically in sclerenchyma cells (the third cell-layer from the root surface), and the maximal accumulation was seen at 3–6 h following the supply of NH4+ ions. Expression of the NADH-GOGAT gene in sclerenchyma cells was also confirmed using transgenic rice plants expressing GUS reporter gene under the control of rice NADH-GOGAT promoter. On the other hand, clear signals for the NADH-GOGAT protein were detected in epidermial cells and exodermal cells (the first and second cell layers from the root surface) at 12 h, following the supply of NH4+ ions. The distinct localization of mRNA and protein for NADH-GOGAT suggests that either the mRNA or the translated protein in the sclerenchyma cells is migrated to the root surface. In contrast to NADH-GOGAT protein, Fd-GOGAT (EC 1.4.7.1) protein was detected in sclerenchyma cells, cortex cells, and stele in the rice roots. The distinct localization of the two GOGAT species indicates that they have different roles in the nitrogen metabolism in rice roots.  相似文献   

20.
N. I. C. Nwachuku 《Planta》1968,83(2):150-160
Summary Detopped root systems of Ricinus communis plants were used for the study of the effects of temperature and DNP on the uptake of K and Na ions supplied as KNO3 and NaNO3.When K and Na ions were offered together in equivalent concentrations, the steady state uptake rates for K+ and Na+ at 23 to 25° gave a K+/Na+ ratio of 3. Increasing the Na+ concentration relative to K+ 3-fold did not alter the preferential uptake of K+. The uptake of K+ was more sensitive to temperature in the range 10 to 40° and to the application of DNP at 1.5x10-4 M than was the uptake of Na+. When NaNO3 was the only salt supplied Na+ uptake became more sensitive to DNP than when both K+ and Na+ nitrates were supplied. Prolonged application of DNP led to net K+ efflux from the roots, even when no K+ was being supplied to the roots. Net Na+ efflux under the influence of DNP occurred only in roots previously grown on Na-containing nutrient medium.The different responses of the K+ and Na+ uptake processes to temperature and DNP suggest the operation of different uptake mechanisms for K+ and Na+ These results have been considered in relation to the recent concept of dual mechanisms for the absorption of alkali cations by plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号