首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The phospholipid composition and the phospholipase C activity of envelope fractions of Escherichia coli B were determined with special consideration of fractions containing sites at which an attachment of inner and outer membranes had been observed in the electron microscope (Int.M). Phosphoglycerides labeled with [14C]palmitic acid and [3H]serine were extracted from membrane fractions and identified by two-dimensional thin-layer chromatography. The amount of phosphatidylethanolamine was highest in the outer membrane, whereas the amounts of phosphatidylglycerol and cardiolipin were highest in the inner membrane. The Int.M fractions were observed to have concentrations of phospholipids intermediate to those of the inner and outer membranes. This result supports the assumption that a concentration gradient of inner membrane-outer membrane lipids might exist at the membrane contact sites. The highest phospholipase C activity was detected in the inner membrane and Int.M fractions. The presence of phospholipase C and other lipolytic enzymes in the Int.M fractions suggests a possible involvement of adhesion sites in lipid metabolism, adding a further set of activities to the function of these domains.  相似文献   

2.
Myxococcus xanthus cells coordinate cellular motility, biofilm formation, and development through the use of cell signaling pathways. In an effort to understand the mechanisms underlying these processes, the inner membrane (IM) and outer membrane (OM) of strain DK1622 were fractionated to examine protein localization. Membranes were enriched from spheroplasts of vegetative cells and then separated into three peaks on a three-step sucrose gradient. The high-density fraction corresponded to the putative IM, the medium-density fraction corresponded to a putative hybrid membrane (HM), and the low-density fraction corresponded to the putative OM. Each fraction was subjected to further separation on discontinuous sucrose gradients, which resulted in discrete protein peaks for each major fraction. The purity and origin of each peak were assessed by using succinate dehydrogenase (SDH) activity as the IM marker and reactivities to lipopolysaccharide core and O-antigen monoclonal antibodies as the OM markers. As previously reported, the OM markers localized to the low-density membrane fractions, while SDH localized to high-density fractions. Immunoblotting was used to localize important motility and signaling proteins within the protein peaks. CsgA, the C-signal-producing protein, and FibA, a fibril-associated protease, were localized in the IM (density, 1.17 to 1.24 g cm(-3)). Tgl and Cgl lipoproteins were localized in the OM, which contained areas of high buoyant density (1.21 to 1.24 g cm(-3)) and low buoyant density (1.169 to 1.171 g cm(-3)). FrzCD, a methyl-accepting chemotaxis protein, was predominantly located in the IM, although smaller amounts were found in the OM. The HM peaks showed twofold enrichment for the type IV pilin protein PilA, suggesting that this fraction contained cell poles. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of proteins that were unique to the IM and OM. Characterization of proteins in an unusually low-density membrane peak (1.072 to 1.094 g cm(-3)) showed the presence of Ta-1 polyketide synthetase, which synthesizes the antibiotic myxovirescin A.  相似文献   

3.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

4.
Zones of membrane adhesion in the cryofixed envelope of Escherichia coli   总被引:7,自引:0,他引:7  
The envelopes of Escherichia coli B and E. coli K29 were examined using cryofixation and freeze substitution. Emphasis was directed toward the question whether membrane adhesion zones (which connect inner membrane (IM) and outer membrane (OM) after plasmolysis in 10-20% sucrose) can be visualized with the use of cryotechniques. Plasmolysis in 10-20% sucrose was observed to have no effect on cell viability. We found that simple plunge-freezing methods preserve adhesion sites, whereas these sites were not observed after impact-freezing. Also, plasmolysis "bays," visible in light microscopic preparations of living cells, were seen to be maintained intact after plunge-freezing. Employment of photocrosslinking with UV-flashes before or after plasmolysis showed a significant increase in the number of adhesion areas compared to noncrosslinked specimens. To control the contact speed of the specimen during immersion into the cryogen, a hollow rotor was constructed in which the cryogenic liquid is moving at desired high speeds. Adhesion sites presented themselves in the plasmolyzed cell as sites of close contact of the outer and inner membrane, an arrangement that would leave very limited space for peptidoglycan layers at the contact site of the two membranes. Adhesion sites may occur either as single, isolated sites or within stretches of IM/OM apposition where they appear to function as "spot welds" between the two membranes. Exposure of cells to sucrose concentrations of 35% caused rupture of adhesions with cytoplasmic fragments remaining attached to the envelope. The cryofixation procedures described here do not presently yield the number of membrane adhesions obtainable with conventional aldehyde fixation. However, since the combination of millisecond photocrosslinking and cryofixation of plasmolyzed cells resulted in a higher membrane stabilization and in an increase of the number of adhesion sites, this combination appears to be a useful tool for the analysis of sensitive membrane structures.  相似文献   

5.
《Gene》1996,168(1):1-8
The Rz1 gene of bacteriophage λ is located within the Rz lysis gene. It codes for the 6.5-kDa prolipoprotein (Rz1) which undergoes N-terminal signal sequence cleavage and post-translational lipid modification of the N-terminal Cys of the mature protein. Globomycin, the antibiotic which inhibits bacterial signal peptidase II, specific for prolipoproteins containing diacylglyceryl cysteine [Hayashi and Wu, J. Bioenerg. Biomembr. 22 (1990) 451–471] inhibits the N-terminal sequence cleavage of the Rz1 precursor. The mature protein is rich in Pro, which constitutes 25% of its amino acids (aa). Using a computer-predicted, synthetic, 15-aa antigenic determinant of Rz1 polyclonal anti-Rz[46–60] antibodies, were obtained, and employed to localize Rz1 in bacterial fractions. In induced Escherichia coli λ lysogens Rz1 was found almost exclusively in the outer membrane (OM). In a strain overproducing Rz1 from the pSB54 plasmid, it was distributed in all the fractions. OM, fraction A and inner membrane (IM). Expression of Rz1 from the pSB54 caused enlargement of fraction A, corresponding to the adhesion sites of OM and IM. Such an enlargement was previously observed in induced λ lysogens, shortly before the onset of lysis.  相似文献   

6.
Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

7.
The penetration of phage T5 DNA into the Escherichia coli envelope takes place through ion channels (Boulanger, P., and Letellier, L. (1992) J. Biol. Chem. 267, 3168-3172). To identify putative phage protein(s) involved in the formation of these channels, E. coli cells were infected at 37 degrees C with radioactively labeled phage and their envelopes were fractionated. After a flotation gradient, proteins belonging to the phage tail were recovered both in fractions containing the contact sites between the inner and outer membranes and in the outer membrane. The electrophoretic banding pattern of phage proteins indicates that the contact sites were enriched in the protein pb2. Moreover, infected cells were significantly enriched in contact sites as compared to intact cells. There was no enrichment of contact sites and very little radioactivity was found in this fraction and in the outer membrane when the cells were infected at 4 degrees C (i.e. under conditions where the phage does not inject its DNA). These results suggest that both contact sites and pb2 may play a central role in the translocation of phage T5 DNA.  相似文献   

8.
We report the localization of penicillin-binding protein 1b (PBP 1b) in Escherichia coli KN126 and in an overproducing construct containing plasmid pHK231. We used PBP 1b-specific antiserum for the immunoelectron microscopy of ultrathin sections of whole cells and for immunoelectrophoresis of cytoplasm and isolated membrane fractions. We studied ultrathin sections of both glutaraldehyde-fixed cells that had been embedded after progressively lowering the temperature and cryofixed cells that had been freeze-substituted in Lowicryl K4M and HM20. Most of the PBP 1b-specific label was observed in the inner membrane (IM) and the adjacent cytoplasm, much less was observed in the outer membrane (OM); appreciable amounts were also seen in the bulk cytoplasm. Distribution and intensity of label were both temperature dependent: temperature shift-up to 37 degrees C, causing PBP 1b overproduction in the construct, showed a statistically highly significant increase in label of the IM, including a cytoplasmic zone (of at least 30 nm in depth) adjacent to the IM, a zone we termed the membrane-associated area. Concomitant with the temperature shift-up, a decrease in label density was observed in the bulk cytoplasm. Increased label was also found in IM-OM contact areas (zones of membrane adhesion). The periplasm did not show significant label. Western blotting (immunoblotting) revealed PBP 1b in most of the isolated membrane fractions; however, the highest label density was found in membrane fractions of intermediate density, supporting the suggestion of an increased concentration of PBP 1b in the membrane adhesion zones. In summarizing, we propose that PBP 1b is present in the membrane-associated area of the cytoplasm, from where proteins (such as PBP 1b or thioredoxin) gain access to their specific insertion sites in the envelope. The use of several methods of immunoelectron microscopy provided the first unequivocal evidence for localization of PBP 1b at membrane adhesion sites. Since such sites are specifically labeled with anti-PBP 1b serum, we hypothesize that they contain parts of the machinery for assembly and growth of the murein layer.  相似文献   

9.
Lipopolysaccharide isolated from Escherichia coli K-12 did not inactivate phage T4, although the cell envelopes with 1% sodium deoxycholate resulted in the release of cytoplasmic membrane proteins, 70% of the lipopolysaccharide, and almost all of the phospholipid. The reconstitution of phage receptor activity was achieved from deoxycholate-soluble and -insoluble fractions by dialysis against a solution of magnesium chloride. Lipopolysaccharide was the only essential component in the deoxycholate-soluble fraction. PhageT4-resistant mutants YA21-6 and YA21-82, having defects in the deoxycholate-soluble and -insoluble fractions, respectively, were isolated. The deoxycholate-soluble fraction of YA21-6 possessed heptoseless lipopolysaccharide, and this defect was responsible for the phage resistance. The deoxycholate-insoluble fraction of YA21-82 lacked outer membrane protein O-8. The addition of O-8 to this fraction together with the wild-type lipopolysaccharide resulted in the appearance of the receptor activity. Furthermore, the reconstitution was successfully achieved with only O-8 and the wild-type lipopolysaccharide, indicating that O-8 was an essential component in the deoxycholate-insoluble fraction.  相似文献   

10.
The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose. The cytoplasmic membrane (CM) was isolated from OM-depleted cells after disruption with a French press. The OM and membrane vesicles isolated from the extracellular culture fluid of cellulose-grown cells had a higher density, much lower succinate dehydrogenase activity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles different from those of the CM. The OM from both glucose- and cellulose-grown cells and the extracellular membrane vesicles from cellulose-grown cultures exhibited higher endoglucanase, xylanase, and acetylesterase activities than the CM and other cell fractions. Endoglucanase 2 was absent from the isolated OM fractions of glucose- and cellulose-grown cells and from the extracellular membrane vesicles of cellulose-grown cells but was present in the CM and intracellular glycogen granule fractions, while endoglucanase 3 was enriched in the OM. Cellobiosidase was located primarily in the periplasm as previously reported, while cellobiase was mainly present in the glycogen granule fraction of glucose-grown cells and in a nongranular glycogen and CM complex in cellulose-grown cells. The cellobiase was not eluted from glycogen granules by cellobiose, maltose, and maltotriose nor from either the granules or the cell membranes by nondenaturing detergents but was eluted from both glycogen granules and cell membranes by high concentrations of salts. The eluted cellobiase rebound almost quantitatively when diluted and mixed with purified glycogen granules but exhibited a low affinity for Avicel cellulose. Thus, we have documented a method for isolation of OM from F. succinogenes, identified the OM origin of the extracellular membrane vesicles, and located glycanases and cellobiase in membrane and glycogen fractions.  相似文献   

11.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

12.
Growth temperature affects both the structure and the phage-inactivating capacity of Salmonella anatum A1 lipopolysaccharide. Whereas S. anatum cells normally synthesize smooth lipopolysaccharide when grown at physiological temperature (37 degrees C), a partial smooth-rough transition occurs when cells are grown at low temperature (20 to 25 degrees C). The synthesis at low growth temperature of lipopolysaccharide molecules lacking O-antigen was detected both by increased sensitivity of cells to the rough-specific bacteriophage Felix O-1 and by fractionation of oligosaccharides derived from lipopolysaccharide by mild acid hydrolysis. Growth temperature-induced changes in the structure of S. anatum A1 lipopolysaccharide also affected its ability to inactivate epsilon15, a bacteriophage that binds initially to the O-antigen portion of the molecule. Purified lipopolysaccharide prepared from cells grown at low growth temperature exhibited a higher in vitro phage-inactivating capacity than did lipopolysaccharide prepared from cells grown at physiological temperature (37 degrees C).  相似文献   

13.
Structural information defining an N-terminal sequence required for the membrane sorting of bacterial lipoproteins has been previously garnered through the study of a hybrid outer membrane (OM) lipo-beta-lactamase (LL) (Ghrayeb and Inouye (1984) J. Biol. Chem. 259, 463-467). Introduction of an aspartate as the second residue of mature LL (D2 mutant) causes an inner membrane (IM) localization of this protein (Yamaguchi, K., Yu, F., and Inouye, M. (1988) Cell 53, 423-432). Introduction of as aspartate at the third residue of mature LL (D3) causes a weaker IM sorting signal and when present as the fourth residue (D4), normal OM sorting occurs. A positively charged residue at the second position (K2) has no effect on OM localization. Remarkably, glutamate substitution at either the second (E2) or third (E3) position does not interfere with OM sorting. Sorting of the mutant D2 LL can be partially suppressed by introduction of a positively charged histidine (D2H3) or lysine (D2K3) at residue 3 of the mature protein. These results indicate that both the negative charge of the aspartate residue and some structural feature not present in a glutamate residue are required for sorting to the IM. The suppression of IM localization of the D2H3 LL double mutant can be eliminated by growing Escherichia coli at pH 8.4 to reduce the histidine partial positive charge. This result supports the essentiality of a negative charge in IM localization and indicates that the committed step in lipoprotein sorting is made in a cellular compartment, the periplasm, at equilibrium with the external pH.  相似文献   

14.
To study lipoprotein sorting in Escherichia coli, we devised a novel screen in which sensitivity or resistance to bacteriophage T5 and colicin M reflects the membrane localization of the bacteriophage T5-encoded lipoprotein Llp, which inactivates the outer membrane (OM) T5 receptor (FhuA). When processed by lipoprotein signal peptidase, Llp has a serine at position +2, immediately after the fatty acylated N-terminal cysteine. As predicted by the '+2 lipoprotein sorting rule' that determines the localization of lipoproteins in the cell envelope, Llp is located in the OM. However, contrary to expectations, when serine +2 was replaced by aspartate, the canonical plasma membrane lipoprotein retention signal, Llp was still > or =40% targeted to the OM and protected cells against colicin M and phage T5. OM association of this Llp derivative was abolished when a peptide spacer was inserted between the aspartate and the rest of Llp or when the formation of an intramolecular disulphide bond in Llp was prevented by substituting one or other of the cysteines involved. Furthermore, analysis of a MalE-Llp hybrid protein with or without a lipid moiety demonstrated that fatty acylation of Llp is essential for its OM association and for protection against colicin M and bacteriophage T5. These data suggest (i) that phage-encoded Llp uses the endogenous E. coli Lol pathway for lipoprotein sorting to the OM and (ii) that the conformation of a lipoprotein can affect its sorting within the cell envelope.  相似文献   

15.
A whole cell lysate of Legionella pneumophila was fractionated into five membrane fractions by sucrose gradient centrifugation. Membranes were characterized by enzymatic, chemical, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Two forms of cytoplasmic membrane (CM-1, CM-2), a band of intermediate density (IM), and two forms of outer membrane (OM-1, OM-2) were detected. The CM-1 fraction was the purest form of cytoplasmic membrane, and fraction CM-2 was primarily cytoplasmic membrane associated with small amounts of peptidoglycan. The IM, CM-1, and CM-2 fractions were enriched in peptidoglycan, and the amount of carbohydrate and 2-keto-3-deoxyoctonic acid was not appreciably greater in outer membrane relative to cytoplasmic membrane. Phosphatidylethanolamine and phosphatidylcholine were found to be the major phospholipids in the membrane fractions. The major outer membrane proteins had molecular sizes of 29,000 and 33,000 daltons and were both modified by heating. The 29,000-dalton protein was tightly associated with the peptidoglycan and was equally distributed in the IM, OM-1, and OM-2.  相似文献   

16.
Kappa phage active onSerratia marcescens can form plaques on white and red strains with identical efficiencies. To identify the kappa phage receptor, the inactivation of the phage was studied after incubation with several bacterial subcellular fractions. The experiments demonstrated that kappa phage adsorbs to outer membrane fractions of susceptible cells. Proteinase K did not affect the rate of inactivation. Lipopolysaccharide proved to be the primary receptor for kappa phage. Prodigiosin content of the lipopolysaccharide fraction was low.  相似文献   

17.
The outer membrane (OM) of gram-negative bacteria is an asymmetric lipid bilayer that protects the cell from toxic molecules. Lipopolysaccharide (LPS) is an essential component of the OM in most gram-negative bacteria, and its structure and biosynthesis are well known. Nevertheless, the mechanisms of transport and assembly of this molecule in the OM are poorly understood. To date, the only proteins implicated in LPS transport are MsbA, responsible for LPS flipping across the inner membrane, and the Imp/RlpB complex, involved in LPS targeting to the OM. Here, we present evidence that two Escherichia coli essential genes, yhbN and yhbG, now renamed lptA and lptB, respectively, participate in LPS biogenesis. We show that mutants depleted of LptA and/or LptB not only produce an anomalous LPS form, but also are defective in LPS transport to the OM and accumulate de novo-synthesized LPS in a novel membrane fraction of intermediate density between the inner membrane (IM) and the OM. In addition, we show that LptA is located in the periplasm and that expression of the lptA-lptB operon is controlled by the extracytoplasmic sigma factor RpoE. Based on these data, we propose that LptA and LptB are implicated in the transport of LPS from the IM to the OM of E. coli.  相似文献   

18.
Zayas M  Villafane R 《Gene》2007,386(1-2):211-217
To understand the interaction between lipopolysaccharide (LPS) and proteins in molecular detail, a molecular genetic approach has been employed, using phage as a model system. The phage epsilon(34) is a Salmonella phage whose tailspike protein (TSP) uses the host LPS as its initial host cell receptor. Previous studies indicated that there was a similarity between the well-studied tail protein of Salmonella phage P22 and the epsilon(34). This study reports the identification of the gene for the epsilon(34) TSP as well as its initial characterization. In addition, some aspects of the structure of the epsilon(34) TSP have been deduced.  相似文献   

19.
We examined in vivo effects of selective estrogen receptor modulators (SERMs) 4-OH-tamoxifen (Tam), GW 5638 (GW) and EM-800 (EM) on myometrial gene expression. The uteri of ovariectomized ewes were infused with 10−7 M of one SERM via indwelling catheters for 24 h preceding hysterectomy. Half of the ewes in each SERM group received an intramuscular injection of 50 μg 17β-estradiol (E2) 18 h prior to hysterectomy. Northern blot analysis and in situ hybridization demonstrated that E2 increased estrogen receptor (ER), progesterone receptor (PR) and cyclophilin (CYC) gene expression in the cells of both inner layer of myometrium (IM) and outer layer of myometrium (OM) as well as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression in OM. Tam also increased ER mRNA levels in OM. EM appeared to increase ER gene expression, but antagonized E2’s up-regulation of PR and CYC gene expression in both IM and OM. Tam and GW also antagonized E2 up-regulation of PR gene expression in OM but not IM. No SERM affected GAPDH gene expression with or without E2. Immunohistochemistry indicated that E2 increased nuclear ER and PR protein levels in both IM and OM. EM was unique in up-regulating ER protein levels, opposite to its effects in endometrial cells. All SERMs tested antagonized this increase in PR immunostaining preferentially in OM compared to the IM layer. These results illustrate gene and cell layer-specific effects of SERMs in sheep myometrium.  相似文献   

20.
How complement kills E. coli. I. Location of the lethal lesion   总被引:16,自引:0,他引:16  
We have studied the action of human complement (C) on E. coli membranes. We find, as have others, that C disrupts the outer membrane (OM), allowing the release of periplasmic proteins. In addition, we have found 1) that in the complete absence of lysozyme, C damages the inner membrane (IM), 2) IM damage is different from OM damage in that only small molecules traverse a damaged IM whereas macromolecules traverse damaged OM, 3) IM damage and OM damage occur with identical kinetics and dose response, suggesting that IM and OM damage are closely coupled events, and 4) upon the addition of purified C8 and C9 to the washed cellular intermediate, E. coli C 1-7, both IM and OM are damaged coordinately. These results, taken together, suggest that C damages E. coli membranes by acting at a site contiguous with both membranes. We speculate that C may simultaneously gain access to both membranes by acting at the junctions between IM and OM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号