首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human centrin 2 is a component of the nucleotide excision repair system, as a subunit of the heterotrimer including xeroderma pigmentosum group C protein (XPC) and hHR23B. The C-terminal domain of centrin (C-HsCen2) binds strongly a peptide from the XPC protein (P1-XPC: N(847)-R(863)). Here, we characterize the solution Ca(2+)-dependent structural and molecular features of the C-HsCen2 in complex with P1-XPC, mainly using NMR spectroscopy and molecular modeling. The N-terminal half of the peptide, organized as an alpha helix is anchored into a deep hydrophobic cavity of the protein, because of three bulky hydrophobic residues in position 1-4-8 and electrostatic contacts with the centrin helix E. Investigation of the whole centrin interactions shows that the N-terminal domain of the protein is not involved in the complex formation and is structurally independent from the peptide-bound C-terminal domain. The complex may exist in three different binding conformations corresponding to zero, one, and two Ca(2+)-bound states, which may exchange with various rates and have distinct structural stability. The various features of the intermolecular interaction presented here constitute a centrin-specific mode for the target binding.  相似文献   

2.
Centrin is an essential component of microtubule-organizing centers in organisms ranging from algae and yeast to humans. It is an EF-hand calcium-binding protein with homology to calmodulin but distinct calcium binding properties. In a previously proposed model, the C-terminal domain of centrin serves as a constitutive anchor to target proteins, and the N-terminal domain serves as the sensor of calcium signals. The three-dimensional structure of the N-terminal domain of Chlamydomonas rheinhardtii centrin has been determined in the presence of calcium by solution NMR spectroscopy. The domain is found to occupy an open conformation typical of EF-hand calcium sensors. Comparison of the N- and C-terminal domains of centrin reveals a structural and biochemical basis for the domain specificity of interactions with its cellular targets and the distinct nature of centrin relative to other EF-hand proteins. An NMR titration of the centrin N-terminal domain with a fragment of the known centrin target Sfi1 reveals binding of the peptide to a discrete site on the protein, which supports the proposal that the N-terminal domain serves as a calcium sensor in centrin.  相似文献   

3.
Centrin is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. It is found in microtubule-organizing centers of organisms ranging from algae and yeast to man. In vitro, the C-terminal domain of centrin binds to the yeast centrosomal protein Kar1p in a calcium-dependent manner, whereas the N-terminal domain does not show any appreciable affinity for Kar1p. To obtain deeper insights into the structural basis for centrin's function, we have characterized the affinities of the C-terminal domain of Chlamydomonas reinhardtii centrin for calcium and for a peptide fragment of Kar1p using CD, fluorescence, and NMR spectroscopy. Calcium binding site IV in C. reinhardtii centrin was found to bind Ca2+ approximately 100-fold more strongly than site III. In the absence of Ca2+, the protein occupies a mixture of closed conformations. Binding of a single ion in site IV is sufficient to radically alter the conformational equilibrium, promoting occupancy of an open conformation. However, an exchange between closed and open conformations remains even at saturating levels of Ca2+. The population of the open conformation is substantially stabilized by the presence of the target peptide Kar1p-(239-257) to a point where a single ion bound in site IV is sufficient to completely shift the conformational equilibrium to the open conformation. This is reflected in the enhancement of the Ca2+ affinity in this site by more than an order of magnitude. These data confirm the direct coupling of the Ca2+ binding-induced shift in the equilibrium between the closed and open conformations to the binding of the peptide. Combined with the common localization of the two proteins in the microtubule organizing center, our results suggest that centrin is constitutively bound to Kar1p through its C-terminal domain and that centrin's calcium sensor activities are mediated by the N-terminal domain.  相似文献   

4.
The human tumor suppressor protein p53 is understood only to some extent on a structural level. We performed a comprehensive biochemical and biophysical structure-function analysis of p53 full-length protein and p53 fragments. The analysis showed that p53 and the fragments investigated form stable functional units. Full-length p53 and the tetrameric fragment N93p53 (residues 93-393) are, however, destabilized significantly compared to the monomeric core domain (residues 94-312) and the monomeric fragment p53C312 (residues 1-312). At the physiological temperature of 37 degrees C and in the absence of modifications or stabilizing partners, wild-type p53 is more than 50% unfolded correlating with a 75% loss in DNA-binding activity. Furthermore the analysis of CD spectra revealed that full-length p53 contains large unstructured regions in its N and C-terminal parts. Our results indicate that full-length p53 is a modular protein consisting of defined structured and unstructured regions. We propose that p53 belongs to the growing family of loosely folded or partially unstructured native proteins. The lack of a rigid structure combined with the low overall stability may allow the physiological interaction of p53 with a multitude of partner proteins and the regulation of its turnover.  相似文献   

5.
The C-terminal domain of human centrin 2 (C-HsCen2) strongly binds to P1-XPC, a peptide comprising 17 amino acids with a NWKLLAKGLLIRERLKR sequence. This peptide corresponds to residues N847-R863 of XPC, a protein involved in the recognition of damaged DNA during the initial step of the nucleotide excision repair pathway. The slow internal dynamics of the protein backbone in the C-HsCen-P1-XPC complex was studied by measuring the relaxation rates of zero- and double-quantum coherences involving neighboring pairs of carbonyl 13C and amide 15N nuclei. These relaxation rates, which reflect dynamics on time scales in the range of micro- to milliseconds, vary significantly along the protein backbone. Analysis of the relaxation rates at different CaCl2 concentrations and ionic strengths shows that these slow motions are mainly affected by the binding of a Ca2+ ion to the lower-affinity EF-hand III. Moreover, we discuss the possible functional role of residues that undergo differential exchange in the formation of HsCen homodimers.  相似文献   

6.
Centrin is an EF-hand calcium-binding protein found in microtubule organizing centers of organisms ranging from algae and yeast to man. Phosphorylation in the centrin C-terminal domain occurs in mitosis and is associated with alterations in contractile fibers. To obtain insight into the structural basis for the functional effect of phosphorylation, Chlamydomonas reinhardtii centrin C-terminal domain phosphorylated at Ser167 (pCRC-C) has been produced and characterized. The structure of pCRC-C was compared to the unmodified protein by NMR spectroscopy. The effect of phosphorylation on target binding was examined for the complex of pCRC-C and a 19 residue centrin-binding fragment of Kar1. Remarkably, the efficient and selective phosphorylation by PKA was suppressed in the complex. Moreover, comparisons of NMR chemical shift differences induced by phosphorylation reveal a greater effect from phosphorylation in the context of the Kar1 complex than for the free protein. These results directly demonstrate that phosphorylation modulates the structure and biochemical activities of centrin.  相似文献   

7.
cAMP-dependent protein kinase (cAPK) is a key component in numerous cell signaling pathways. The cAPK regulatory (R) subunit maintains the kinase in an inactive state until cAMP saturation of the R-subunit leads to activation of the enzyme. To delineate the conformational changes associated with cAPK activation, the amide hydrogen/deuterium exchange in the cAPK type IIbeta R-subunit was probed by electrospray mass spectrometry. Three states of the R-subunit, cAMP-bound, catalytic (C)-subunit bound, and apo, were incubated in deuterated water for various lengths of time and then, prior to mass spectrometry analysis, subjected to digestion by pepsin to localize the deuterium incorporation. High sequence coverage (>99%) by the pepsin-digested fragments enables us to monitor the dynamics of the whole protein. The effects of cAMP binding on RIIbeta amide hydrogen exchange are restricted to the cAMP-binding pockets, while the effects of C-subunit binding are evident across both cAMP-binding domains and the linker region. The decreased amide hydrogen exchange for residues 253-268 within cAMP binding domain A and for residues 102-115, which include the pseudosubstrate inhibitory site, support the prediction that these two regions represent the conserved primary and peripheral C-subunit binding sites. An increase in amide hydrogen exchange for a broad area within cAMP-binding domain B and a narrow area within cAMP-binding domain A (residues 222-232) suggest that C-subunit binding transmits long-distance conformational changes throughout the protein.  相似文献   

8.
Monoclonal and polyclonal antibodies raised against algal centrin, a protein of algal striated flagellar roots, were used to characterize the occurrence and distribution of this protein in interphase and mitotic Chlamydomonas cells. Chlamydomonas centrin, as identified by Western immunoblot procedures, is a low molecular (20,000-Mr) acidic protein. Immunofluorescence and immunogold labeling demonstrates that centrin is a component of the distal fiber. In addition, centrin-based flagellar roots link the flagellar apparatus to the nucleus. Two major descending fibers extend from the basal bodies toward the nucleus; each descending fiber branches several times giving rise to 8-16 fimbria which surround and embrace the nucleus. Immunogold labeling indicates that these fimbria are juxtaposed to the outer nuclear envelope. Earlier studies have demonstrated that the centrin-based linkage between the flagellar apparatus and the nucleus is contractile, both in vitro and in living Chlamydomonas cells (Wright, R. L., J. Salisbury, and J. Jarvik. 1985. J. Cell Biol. 101:1903-1912; Salisbury, J. L., M. A. Sanders, and L. Harpst. 1987. J. Cell Biol. 105:1799-1805). Immunofluorescence studies show dramatic changes in distribution of the centrin-based system during mitosis that include a transient contraction at preprophase; division, separation, and re-extension during prophase; and a second transient contraction at the metaphase/anaphase boundary. These observations suggest a fundamental role for centrin in motile events during mitosis.  相似文献   

9.
Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered alpha-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an alpha-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.  相似文献   

10.
Drebrin is an actin-binding protein which is expressed at highly levels in neurons. When introduced into fibroblasts, it has been known to bind to F-actin and to cause remodeling of F-actin. Here, we performed a domain analysis of the actin-binding and actin-remodeling activities of drebrin. Various fragments of drebrin cDNA were fused with green fluorescent protein cDNA and introduced into Chinese hamster ovary cells. Association of the fusion protein with F-actin and remodeling of the F-actin were examined. We found that the central 85-amino-acid sequence (residues 233-317) was sufficient for the binding to and remodeling of F-actin. The binding activity of this fragment was relatively low compared with that of full-length drebrin, but all the types of abnormalities of F-actin that are observed with full-length drebrin were also observed with this fragment. When this sequence was further fragmented, the actin-binding activity was greatly reduced and the actin-remodeling activity disappeared. The actin-binding activity of the central region of drebrin was confirmed by a cosedimentation assay of chymotryptic fragments of drebrin with purified actin. These data indicate that the actin-binding domain and actin-remodeling domain are identical and that this domain is located at the central region of drebrin.  相似文献   

11.
Fission yeast cells depend on the anillin-related protein Mid1p for reliable cytokinesis. Insolubility limits the purification of full-length Mid1p for biophysical analysis, and lack of knowledge about the structural domains of Mid1p limits functional analysis. We addressed these limitations by identifying in a bacterial expression screen of random Mid1p fragments five soluble segments that can be purified and one insoluble segment. Using complementation experiments in Δmid1 cells, we tested the biological functions of these six putative domains that account for full-length Mid1p. The N-terminal domain (residues 1–149) is essential for correct positioning and orientation of septa. The third domain (residues 309–452) allows the construct composed of the first three domains (residues 1-452) to form hydrodynamically well-behaved octamers. Constructs consisting of residues 1–452 or 1–578 carry out most functions of full-length Mid1p, including concentration at the equatorial cortex in nodes that accumulate myosin-II and other contractile ring proteins during mitosis. However, cells depending on these constructs without the insoluble domain (residues 579–797) form equatorially located rings slowly from strands rather than by direct condensation of nodes. We conclude that residues 1–578 assemble node components myosin-II, Rng2p, and Cdc15p, and the insoluble domain facilitates the normal, efficient condensation of nodes into rings.  相似文献   

12.
Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.  相似文献   

13.
Helicobacter pylori secretes a cytotoxin (VacA) that induces the formation of large vacuoles originating from late endocytic vesicles in sensitive mammalian cells. Although evidence is accumulating that VacA is an A-B toxin, distinct A and B fragments have not been identified. To localize the putative catalytic A-fragment, we transfected HeLa cells with plasmids encoding truncated forms of VacA fused to green fluorescence protein. By analyzing truncated VacA fragments for intracellular vacuolating activity, we reduced the minimal functional domain to the amino-terminal 422 residues of VacA, which is less than one-half of the full-length protein (953 amino acids). VacA is frequently isolated as a proteolytically nicked protein of two fragments that remain noncovalently associated and retain vacuolating activity. Neither the amino-terminal 311 residue fragment (p33) nor the carboxyl-terminal 642 residue fragment (p70) of proteolytically nicked VacA are able to induce cellular vacuolation by themselves. However, co-transfection of HeLa cells with separate plasmids expressing both p33 and p70 resulted in vacuolated cells. Further analysis revealed that a minimal fragment comprising just residues 312-478 functionally complemented p33. Collectively, our results suggest a novel molecular architecture for VacA, with cytosolic localization of both fragments of nicked toxin required to mediate intracellular vacuolating activity.  相似文献   

14.
Protein Ser/Thr phosphatase 5 is a 58-kDa protein containing a catalytic domain structurally related to the catalytic subunits of protein phosphatases 1, 2A, and 2B and an extended N-terminal domain with three tetratricopeptide repeats. The activity of this enzyme is stimulated 4-14-fold in vitro by polyunsaturated fatty acids and anionic phospholipids. The structural basis for lipid activation of protein phosphatase 5 was examined by limited proteolysis and site-directed mutagenesis. Trypsinolysis removed the tetratricopeptide repeat domain and increased activity to approximately half that of lipid-stimulated, full-length enzyme. Subtilisin removed the tetratricopeptide repeat domain and 10 residues from the C terminus, creating a catalytic fragment with activity that was equal to or greater than that of lipid-stimulated, full-length enzyme. Catalytic fragments generated by proteolysis were no longer stimulated by lipid, and degradation of the tetratricopeptide repeat domain was decreased by association with lipid. A truncated mutant missing 13 C-terminal residues was also insensitive to lipid and was as active as full-length, lipid-stimulated enzyme. These results suggest that the C-terminal and N-terminal domain act in a coordinated manner to suppress the activity of protein phosphatase 5 and mediate its activation by lipid. These regions may be targets for the regulation of protein phosphatase 5 activity in vivo.  相似文献   

15.
Xeroderma pigmentousum group C protein (XPC) is involved in the first step of nucleotide excision repair, with multiple functional roles including DNA damage recognition and recruitment of the repair machinery. This human protein of 940 residues forms a strong heterotrimeric complex with Rad23B and centrin 2. The structure of XPC is actually not known, and lack of significant sequence homology with proteins from structural data bases precludes any relevant prediction. Here, we present the molecular and structural characterization of a C-terminal fragment of XPC (C-XPC: 126 residues, 815-940), which was shown to be involved in centrin 2 and TFIIH binding. C-XPC may be highly expressed in E. coli, but because of its limited solubility it was purified under 6 M urea. Using bioinformatics tools, and a combination of several experimental methods (circular dichroism, fluorescence, nuclear magnetic resonance, and small-angle X-ray scattering), we show that C-XPC has a highly flexible structure under native physiological conditions, with a propensity to form helical secondary structures. Isothermal titration calorimetry experiments show that the C-XPC fragment binds human centrin 2 with high affinity and a 1:1 stoichiometry. NMR analysis indicates that the physical interaction between C-XPC and centrin 2 induces only minor conformational changes into XPC, localized around the 17-mer segment (847-863), showed to be critically involved in the centrin binding.  相似文献   

16.
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.  相似文献   

17.
In the flagellate green alga Chlamydomonas reinhardtii the Ca(2+)-binding EF-hand protein centrin is encoded by a single-copy gene. Previous studies have localized the protein to four distinct structures in the flagellar apparatus: the nucleus-basal body connector, the distal connecting fiber, the flagellar transitional region, and the axoneme. To explain the disjunctive distribution of centrin, the interaction of centrin with as yet unknown specific centrin-binding proteins has been implied. Here, we demonstrate using serial section postembedding immunoelectron microscopy of isolated cytoskeletons that centrin is located in additional structures (transitional fibers and basal body lumen) and that the centrin-containing structures of the basal apparatus are likely part of a continuous filamentous scaffold that extends from the nucleus to the flagellar bases. In addition, we show that centrin is located in the distal lumen of the basal body in a rotationally asymmetric structure, the V-shaped filament system. This novel centrin-containing structure has also been detected near the distal end of the probasal bodies. Taken together, these results suggest a role for a rotationally asymmetric centrin "seed" in the growth and development of the centrin scaffold following replication of the basal apparatus.  相似文献   

18.
Leishmania donovani, a protozoan parasite, causes visceral disease in humans. To identify genes that control growth, we have isolated for the first time in the order Kinetoplastida a gene encoding for centrin from L. donovani. Centrin is a calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. Protein sequence similarity and immunoreactivity confirmed that Leishmania centrin is a homolog of human centrin 2. Immunofluorescence analysis localized the protein in the basal body. Calcium binding analysis revealed that its C-terminal Ca(2+) binding domain binds 16-fold more calcium than the N-terminal domain. Electrophoretic mobility shift of centrin treated with EGTA and abrogation of the shift in its mutants lacking a Ca(2+) binding site suggest that Ca(2+) binding to these regions may have a role in the protein conformation. The levels of centrin mRNA and protein were high during the exponential growth of the parasite in culture and declined to a low level in the stationary phase. Expression of N-terminal-deleted centrin in the parasite significantly reduces its growth rate, and it was found that significantly more cells are arrested in the G(2)/M stage than in control cells. These studies indicate that centrin may have a functional role in Leishmania growth.  相似文献   

19.
Chen Z  Kurt N  Rajagopalan S  Cavagnero S 《Biochemistry》2006,45(40):12325-12333
Little is known about polypeptide conformation and folding in the presence of molecular chaperones participating in protein biosynthesis. In vitro studies on chaperone-substrate complexes have been mostly carried out with small peptide ligands. However, the technical challenges associated with either competing aggregation or spectroscopically unfavorable size and exchange rates have typically prevented analysis of larger substrates. Here, we report the high-resolution secondary structure of relatively large N-terminal protein fragments bound to the substrate-binding domain of the cotranslationally active chaperone DnaK. The all-alpha-helical protein apomyoglobin (apoMb), bearing the ubiquitous globin fold, has been chosen as a model substrate. On the basis of NMR secondary chemical shift analysis, we identify, for the first time, weak helical content (similar to that found in the chemically unfolded full-length protein) for the assigned residues of the chaperone-bound chain away from the chaperone binding sites. In contrast, we found that the residues corresponding to the strongest specific binding site for DnaK, examined via a short 13-mer apoMb peptide fragment matching the binding site sequence, display highly reduced helical content in their chaperone-bound form. Given that the free state of the peptide is weakly helical in isolation, we conclude that the substrate residues corresponding to the chaperone binding site undergo helix unwinding upon chaperone binding.  相似文献   

20.
Molecular dissection was employed to identify minimal independent folding units in dihydrofolate reductase (DHFR) from Escherichia coli. Eight overlapping fragments of DHFR, spanning the entire sequence and ranging in size from 36 to 123 amino acids, were constructed by chemical cleavage. These fragments were designed to examine the effect of tethering multiple elements of secondary structure on folding and to test if the secondary structural domains represent autonomous folding units. CD and fluorescence spectroscopy demonstrated that six fragments containing up to a total of seven alpha-helices or beta-strands and, in three cases, the adenine binding domain (residues 37-86), are largely disordered. A stoichiometric mixture of the two fragments comprising the large discontinuous domain, 1-36 and 87-159, also showed no evidence for folding beyond that observed for the isolated fragments. A fragment containing residues 1-107 appears to have secondary and tertiary structure; however, spontaneous self-association made it impossible to determine if this structure solely reflects the behavior of the monomeric form. In contrast, a monomeric fragment spanning residues 37-159 possesses significant secondary and tertiary structure. The urea-induced unfolding of fragment 37-159 in the presence of 0.5 M ammonium sulfate was found to be a well-defined, two-state process. The observation that fragment 37-159 can adopt a stable native fold with unique, aromatic side-chain packing is quite striking because residues 1-36 form an integral part of the structural core of the full-length protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号