首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cell cultures are in general resistant to the transforming effect of a single oncogene, a finding considered consistent with the multistage theory of carcinogenesis. In the present studies, we examined whether cellular age, differentiation stage, and/or tissue origin of primary cells plays a role in determining their response to v-src transformation. To study the role of cellular age, rat mammary fibroblasts were isolated from a 50-day-old female rat and infected with a recombinant retrovirus carrying a v-src gene after 2, 7, 14, 21, and 28 days of continuous growth. To determine whether cellular differentiation is important, fibroblasts were isolated from embryos at 12 and 16 days of gestation, from newborns, and from a 30-day-old rat and similarly infected. Finally, the role of primary-cell histogenesis was assessed by infecting primary cultures of fibroblasts isolated from the mammary gland, dermis, and lungs of a mature rat. When compared to 3Y1 cells, all preparations of primary cultures exhibited considerable resistance to v-src transformation. However, whereas primary cells isolated from different tissues responded similarly to the transforming effect of the oncogene, major differences were observed when cells were transduced at different stages of their in vitro life span. v-src was capable of inducing formation of foci and growth in soft agar in early-passage cells but failed to do so in primary cultures infected after 14 days of continuous passaging. Similarly, both the number of foci and the number of colonies in soft agar decreased with tissue donor age. The differential response of young and senescing cells could not be explained by mutations in v-src provirus, by differences in functional v-src expression, or by growth stimulation or suppression via paracrine mechanisms. Furthermore, v-src cooperated with an immortalizing gene, like simian virus 40 large T, polyomavirus large T, E6 and E7 of human papillomavirus, or an activated p53 mutant, to induce anchorage-independent growth of primary cultures but failed to do so with cytoplasmic transforming genes, like v-abl, v-ras, or v-raf, which did not confer indefinite division potential. These studies indicate that cellular aging is a critical determinant of primary-cell resistance to v-src transformation. It is suggested that v-src requires a nuclear auxiliary function for transformation which is present in early-passage cells, particularly when these cells are derived from embryonic tissue, but is lost as cells approach replicative senescence. This auxiliary function is provided by nuclear oncogenes but not cytoplasmic transforming genes.  相似文献   

2.
Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil.  相似文献   

3.
A murine retroviral vector, LSNLsrc, has been constructed and examined for its ability to induce growth factor independence in cells normally dependent on interleukin 2 (IL-2) or interleukin 3 (IL-3) for growth. The LSNLsrc vector coexpressed the v-src gene of Rous sarcoma virus and the neo gene from transposon Tn5, allowing infected cells to be selected on the basis of G418 resistance. The murine cell lines CTLL-2 and FD.C/1, which are dependent for growth on IL-2 and IL-3, respectively, were both readily infected with the LSNLsrc virus. LSNLsrc-infected, G418-resistant cultures of FD.C/1 cells were able to give rise to IL-3-independent progeny, but all G418-resistant CTLL-2 cells retained normal IL-2 dependence. The induction of IL-3 independence by v-src was not a direct event, since limiting dilution analysis of the LSNLsrc-infected FD.C/1 cells showed that most of them were IL-3 dependent, despite expression of v-src mRNA and active pp60v-src kinase. However, clones selected from this population in the presence of IL-3 were able to undergo a subsequent progression event and generate IL-3-independent progeny. The generation of factor-independent variants in the clonal cultures was a rare event, as witnessed by the death of most of the cells in each clone when IL-3 was withdrawn. Together, these data indicate that a secondary event, in addition to v-src expression, was required to generate IL-3-independent growth. No evidence was found for an autocrine mechanism of transformation involving IL-2, IL-3, interleukin 4, or granulocyte-macrophage colony-stimulating factor.  相似文献   

4.
To clarify whether a single oncogene can transform primary cells in culture, we compared the transforming effect of a recombinant retrovirus (ZSV) containing the v-src gene in rat embryo fibroblasts (REFs) to that in the rat cell line 3Y1. In the focus assay, REFs exhibited resistance to transformation as only six foci were observed in the primary cultures as opposed to 98 in 3Y1 cells. After G418 selection, efficiency of transformation was again somewhat lower with REFs compared to that with 3Y1 cells, but the number of G418-resistant REF colonies was much greater than the number of foci in REF cultures. Furthermore, while 98% of G418-resistant colonies of ZSV-infected REFs were morphologically transformed, only 25% were converted to anchorage- independent growth, as opposed to 100% conversion seen in ZSV-infected 3Y1 cells. The poor susceptibility of REFs to anchorage-independent transformation did not involve differences in expression and subcellular distribution of p60v-src, or its kinase activity in vitro and in vivo. It rather reflected a property of the primary cultures, as cloning of REFs before ZSV infection demonstrated that only 2 out of 6 REF clones tested were permissive for anchorage-independent growth. The nonpermissive phenotype was dominant over the permissive one in somatic hybrid cells, and associated with organized actin filament bundles and a lower growth rate, both before and after ZSV infection. These results indicate that the poor susceptibility of REFs to anchorage-independent transformation by p60v-src reflects the heterogeneity of the primary cultures. REFs can be morphologically transformed by p60v-src with high efficiency but only a small fraction is convertible to anchorage- independent growth. REF resistance seems to involve the presence of a suppressor factor which may emerge from REF differentiation during embryonic development.  相似文献   

5.
When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.  相似文献   

6.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   

7.
P Hevezi  S P Goff 《Journal of virology》1991,65(10):5333-5341
A series of recombinant retroviral genomes was generated by cotransformation of NIH 3T3 cells with a mixture of cloned DNAs: a proviral copy of the wild-type Moloney murine leukemia virus, and Moloney-based vectors containing defective copies of the chicken v-src and the murine v-abl oncogenes. Morphologically transformed foci, appearing at low frequencies in these cultures, released high titers of transforming viruses. Analysis of one group of these viruses showed that the genomes were recombinants containing portions of the viral gag gene juxtaposed to the v-src oncogene. Biologically active cloned DNAs of two of these viruses were obtained and mapped in detail. One of these viruses did not cause disease after inoculation into newborn mice, but the other induced rapidly fatal hemangiosarcomas located exclusively in the brain.  相似文献   

8.
An artificial membrane system was developed to study the molecular basis for interaction of pp60v-src, the Rous sarcoma virus transforming protein, with lipid bilayers. pp60v-src was extracted from cell membranes by detergent solubilization and reincorporated into phospholipid vesicles. Reconstituted pp60v-src retained tyrosine kinase activity and was integrally associated with the liposome through a 10-kilodalton (kDa) amino-terminal domain. The same 10-kDa domain was shown to anchor pp60v-src to the plasma membrane of transformed cells. Reconstitution experiments performed with nonmyristylated pp60v-src proteins revealed that these polypeptides did not interact with phospholipid vesicles. In contrast, myristylated, soluble pp60v-src molecules (including a highly purified pp60v-src preparation) could be reconstituted into liposomes, but their interaction with the liposomal bilayer was not mediated by the 10-kDa amino-terminal domain. When membrane proteins were included during reconstitution of purified pp60v-src, binding through the 10-kDa anchor was restored. A model is presented to accommodate the different types of interactions of pp60v-src with liposomes; the model postulates the existence of an additional membrane component that anchors the pp60v-src polypeptide to the phospholipid bilayer.  相似文献   

9.
Expression of the v-src gene of Rous sarcoma virus in avian embryo neuroretina cells results in transformation and sustained proliferation of these normally resting cells. Transformed neuroretina cells are also tumorigenic upon inoculation into immunodeficient hosts. We have previously described conditional mutants of Rous sarcoma virus encoding p60v-src proteins which induce proliferation of neuroretina cells in the absence of transformation and tumorigenicity. These results suggest that p60v-src is composed of functionally distinct domains which may interact with multiple cellular targets. In this study, we describe a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion of 278 base pairs in the 5' portion of the v-src gene but which has retained the ability to induce proliferation of quail neuroretina cells. The deleted v-src gene encodes a 45,000-molecular-weight phosphoprotein which contains both phosphoserine and phosphotyrosine, is myristylated, and possesses tyrosine kinase activity indistinguishable from that of wild-type p60v-src. Molecular cloning and sequence analysis of the mutant v-src gene have shown that this deletion extends from amino acid 33 to 126 of the wild-type p60v-src. Therefore, this portion of the v-src protein is dispensable for the mitogenic activity of Rous sarcoma virus in neuroretina cells.  相似文献   

10.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

11.
12.
The ability of cloned Rous sarcoma virus (RSV) DNA encoding the v-src oncogene to neoplastically transform normal, diploid Syrian hamster embryo (SHE) cells was examined. Transfection of RSV DNA into early passage SHE cells resulted in a low but significant number of tumors when treated cells were injected into nude mice. Tumors formed with a low frequency (two tumors out of ten sites injected) and only after a long latency period (14 weeks). In contrast to the normal SHE cells, several different carcinogen-induced preneoplastic immortal SHE cell lines were highly susceptible to transformation by the v-src oncogene to the neoplastic phenotype. Tumors formed with high efficiency and a short latency period (less than 3 weeks). Further studies were performed to determine the basis for the inefficient transformation of the normal SHE cells. NeoR clones isolated after cotransfection of SHE cells with pSV2-neo and RSV DNAs were neither morphologically altered nor immortal and did not contain detectable levels of the v-src gene product. These results suggest that neoplastic transformation by v-src DNA in the normal cells is initially suppressed. However, cells from a v-src-induced tumor expressed v-src RNA, and antibody to v-src protein precipitated from the tumor cells a 60,000-molecular-weight protein which displayed protein kinase activity. Karyotypic analyses confirmed that the tumor was derived from Syrian hamster cells and suggested that it was clonal in nature. These results indicate that the v-src oncogene was primarily responsible for neoplastic transformation of SHE cells. In contrast to the results with the v-src oncogene, our previous studies showed that v-Ha-ras oncogene alone is unable to induce neoplastic transformation of SHE cells. Furthermore, the v-myc oncogene was able to compliment v-Ha-ras to neoplastically transform SHE cells, while cotransfection with v-src plus v-myc did not increase the incidence of tumors.  相似文献   

13.
14.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

15.
Chicken embryo fibroblast (CEF) cultures, synchronized by the addition of serum to stationary cells, were exposed to Schmidt-Ruppin strain of Rous Sarcoma Virus (SR-RSV) and the appearance of pp60v-src protein kinase activity was examined through the cell cycle. In cells infected either at the beginning or at the end of G1, the onset of pp60v-src protein kinase activity was coincidental, closely following mitosis, with a delay between the infection of cells with SR-RSV and the appearance of protein kinase activity of about 20 and 16 h, respectively. In cells infected during the S phase this delay was 16 h, as observed for late G1 cells. These experiments show that the activity of pp60v-src protein kinase, which cannot be detected before the first mitosis following infection does not depend on G1. The aphidicolin prevented protein kinase activity if added before or at the beginning of S phase, but not if added later, which is presumably related to the inhibition of S phase, required for provirus integration. The use of colcemid, which suppresses cell division, did not inhibit but delayed the appearance of protein kinase activity. These results show that the synthesis of an active oncogene product, such as pp60v-src protein kinase, depends on both S phase and mitosis.  相似文献   

16.
It has previously been shown that an electrophoretic variant form of the Rous sarcoma virus transforming protein, pp60v-src, exists in src-transformed cells. This variant, which was readily observed in vanadate-treated cells, was characterized as possessing extensive amino-terminal domain phosphotyrosine modification. Its appearance was further correlated with increased src-specific protein kinase activity. In this study, we used a src-specific monoclonal antibody (MAb) to resolve immunologic forms of pp60v-src. The MAb was able to distinguish between two populations of typical lower-band pp60v-src and was unreactive with the electrophoretic variant upper-band pp60v-src species. Using serial immunoprecipitations, we resolved four populations of pp60v-src: src protein either immunoreactive or unreactive with the MAb from both untreated and vanadate-treated transformed cells. The pp60v-src in each fraction displayed a distinct phosphoamino acid composition and tryptic phosphopeptide profile. However, analysis of their tyrosyl kinase specific activities showed that the immunologically resolved populations of pp60v-src from a given culture did not differ. Both pp60v-src fractions from vanadate-treated cells exhibited similar kinase specific activities, which were greatly enhanced over those of enzyme preparations from untreated cells. Since the MAb-reactive pp60v-src fraction from vanadate-treated cells lacked the electrophoretic variant upper-band pp60v-src species yet still possessed enhanced enzymatic specific activity, the initially stated correlation between the appearance of the electrophoretic variant src form and increased src kinase activity breaks down. These results suggest that yet to be defined modifications of the src protein may be involved in its functional regulation.  相似文献   

17.
18.
Membrane association of pp60v-src, the myristylated transforming protein of Rous sarcoma virus, has been shown to be a receptor-mediated process, which is inhibited by myristylated src peptides containing the N-terminal 11 amino acids of the v-src sequence (MGYsrc). By cross-linking radiolabelled MGYsrc peptide to fibroblast membranes, a 32-kilodalton membrane protein was identified as a candidate src receptor. To elucidate the potential role of p32 in binding pp60v-src, we studied the relationship between binding of MGYsrc peptide and pp60v-src polypeptide to cellular membranes. The subcellular membrane distribution of p32 was distinct from that of pp60v-src in transformed cells. Moreover, under certain defined in vitro conditions, it was possible to inhibit peptide cross-linking to p32 without significantly affecting pp60v-src membrane binding. However, when internal sequences were removed from pp60v-src, the binding characteristics of the src deletion polypeptide and MGYsrc peptide became identical. These data indicate that the presence of internal membrane binding domains influences the interaction of myristylated N-terminal src sequences with p32, and suggest that accessory binding factors might be involved in establishing stable contact between pp60v-src and the membrane phospholipid bilayer.  相似文献   

19.
Infection of the IL-3-dependent, myeloid progenitor cell line 32D cl 3 with murine retroviruses that contain either the wild-type or a temperature-sensitive mutant v-src can render these cells growth-factor independent. These cells also became resistant to gamma irradiation administered at the low-dose rate of 0.05 Gy/min, which is used clinically. The v-src-dependent nature of resistance to gamma irradiation was examined by studying four clones of 32D cl 3 cells that had been infected with a retrovirus carrying the tsLA31A mutant of v-src. The tyrosine-specific kinase activity of this mutant is dramatically reduced at the nonpermissive temperature of 39 degrees C. Cells transformed by v-src and grown at either 34 or 39 degrees C, in the presence or absence of IL-3, demonstrated a significantly higher D0 compared to parental cells examined under identical conditions. In addition, expression of v-src abrogated the synergistic killing effect of heat and gamma irradiation. The D0 of parental 32D cl 3 cells kept at 39 degrees C after gamma irradiation was reduced significantly compared to the D0 of these cells kept at 34 degrees C. This contrasts with data from 32D cl 3 cells infected with either the wild-type v-src or the temperature-sensitive mutant, neither exhibited a synergistic effect in the D0 at either 34 or 39 degrees C. Therefore, while continuous expression of a v-src gene product is required for maintenance of the growth-factor-independent state, v-src does not appear to be responsible for the increased gamma-radiation resistance of these cells at low dose rate.  相似文献   

20.
The v-abl and v-src oncogenes encode protein-tyrosine kinases that possess different biological properties in spite of their high degree of amino acid conservation. To correlate functional differences with structural domains of the two oncogenes, we recombined v-abl and v-src just downstream of the lysines in their ATP-binding sites, within the kinase domain. The biological activity of the chimeric genes was studied and compared with that of v-src and v-abl. The v-src/v-abl recombinant shared with v-src and v-abl the ability to transform fibroblasts. In addition, like v-abl, it transformed lymphoid cells and relieved a hematopoietic cell line of its interleukin 3 requirement. In contrast, the reciprocal construct, v-abl/v-src, was transformation defective. Lack of biological activity correlated with formation of a stable complex between the chimeric protein and two cellular proteins and with low kinase activity. We conclude that the specificity within the kinase domain determines the particular biological behavior of protein-tyrosine kinase oncogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号