首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver alcohol dehydrogenase. Purification and properties   总被引:3,自引:2,他引:1       下载免费PDF全文
Alcohol dehydrogenase (EC 1.1.1.1) from the rat liver supernatant fraction has been purified 200-fold and partially characterized. The isolation procedure involved ammonium sulphate fractionation, DEAE-Sephadex chromatography and gel filtration. The purified enzyme behaved as a homogeneous preparation as evaluated by cellulose acetate and polyacrylamide-gel disc electrophoresis. Sulphoethyl-Sephadex chromatography and immunoelectrophoresis with rabbit antiserum indicated the presence of a minor component. Rat liver alcohol dehydrogenase appears to contain 4mol of zinc/mol, has an estimated molecular weight of 65000 and consists of two subunits of similar molecular weight. Heavy-metal ions, thiol-blocking reagents, urea at concentrations below 8m, low pH (5.5) and chelating agents deactivate the enzyme but do not dissociate it into subunits. Deactivated enzyme could not be reactivated. The enzyme is strictly specific for NAD(+) and has a broad specificity for alcohols, which are bound at a hydrophobic site. Inhibition occurred with the enzyme equilibrated with Zn(2+) at concentrations above 0.1mm.  相似文献   

2.
The activity of nitrogenase in the cells of Azobacter vinelandii grown from lyophilized and non-lyophilized cultures depends on the donor of hydrogen and the concentration of oxygen in the gaseous phase. The lyophilized cells are more sensitive to oxygen (O2 optimum for nitrogen fixation is ca. 1 percent) than the non-lyophilized cells (ca. 5 percent). The determination of acetylene reduction in the course of the culture growth has shown that nitrogen fixation in the lyophilized cells takes place after a lag-period (about six hours) at a rate lower than that of the non-lyophilized cells. The results obtained suggest that lyophilization increases the sensitivity of the cells to oxygen and decreases their nitrogenase activity which is however restored after a while.  相似文献   

3.
Particulate alcohol dehydrogenase of acetic acid bacteria that is mainly participated in vinegar fermentation was purified to homogeneous state from Gluconobacter suboxydans IFO 12528. Solubilization of enzyme from the bacterial membrane fraction by Triton X-100 and subsequent fractionation on DEAE-Sephadex A-50 and hydroxylapatite was successful in enzyme purification. A cytochrome c-like component was tightly bound to the dehydrogenase protein and existed as an enzyme-cytochrome complex. It was also confirmed that the alcohol dehydrogenase is not a cytochrome component itself. The molecular weight of the enzyme was determined to be 150,000, and gel electrophoresis showed the presence of three subunits having a molecular weight of 85,000, 49,000 and 14,400. The smallest subunit was corresponded to the cytochrome c-like component. Ethanol was oxidized in the presence of dyes in vitro but NAD or NADP were not required as hydrogen acceptor. Unlike NAD- linked alcohol dehydrogenase in yeast or liver and other primary alcohol dehydrogenases in methanol utilizing bacteria, the enzyme from the acetic acid bacteria showed its optimum pH at fairly acidic pH.  相似文献   

4.
A primary alcohol dehydrogenase has been purified from Methylococcus capsulatus (Texas strain). The purified enzyme catalyzes the oxidation of methanol and formaldehyde to formate; other primary alcohols are oxidized to their corresponding aldehydes. Ammonium ions are required for enzyme activity. The enzyme has a molecular weight of 120,000 daltons and consists of two 62,000 molecular-weight subunits which dissociate at acidic pH. The enzyme is similar to an alcohol dehydrogenase enzyme isolated from Pseudomonas sp. M27.  相似文献   

5.
Alcohol dehydrogenase [EC 1.1.1.1] was purified to homogeneity from rabbit liver by water extraction, DEAE-cellulose treatment, affinity chromatography on 5'-AMP-Sepharose and gel filtration on Sephadex G-150 using dithiothreitol as a stabilizer. The purified enzyme has an estimated molecular weight of 72,000 and consists of two subunits with a molecular weight of about 36,000 each. The enzyme contains 4 g-atoms of zinc and 18 sulfhydryl groups per mol of protein and exhibits maximal activity at pH 10.8, with a second maximum at pH 7.5. The apparent Km values for ethanol and NAD+ are 0.45 mM and 53.19 microM, respectively, at pH 10.8 and 3.33 mM and 6.94 microM, respectively, at pH 7.5. The enzyme oxidizes ethanol most readily among the aliphatic alcohols studied and has very low substrate specificity for methanol. Among steroid alcohols, 5 beta-androstan-3 beta-ol-17-one serves as a substrate for the enzyme. Pyrazole and 4-methylpyrazole (which are well known alcohol dehydrogenase inhibitors), sulfhydryl reagents, heavy metal ions and metal-chelating agents inactivate the enzyme.  相似文献   

6.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

7.
Alcohol-oxidizing enzymes of the facultative methylotroph PAR were investigated after growth of the bacteria on methanol and ethanol. During methanol growth only a phenazine methosulfate-linked alcohol dehydrogenase was detected. This enzyme had broad specificity for primary alcohols and was also capable of oxidation of secondary alcohols. It had a molecular weight of 112,000, was composed of two subunits of equal molecular weight, and showed an absolute requirement for ammonium ion for activation. During ethanol growth this enzyme was absent and was replaced by a typical nicotinamide adenine dinucleotide-linked alcohol dehydrogenase of molecular weight 150,000. The latter enzyme also had broad specificity but could not oxidize methanol. This enzyme was not found during methanol growth. These data show that the organism has two distinctly separate mechanisms for oxidation of alcohols.  相似文献   

8.
Glutaryl-CoA dehydrogenase, a multifunctional enzyme responsible for dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA, has been purified 1,680-fold from porcine liver mitochondria. The purified porcine enzyme has a subunit molecular weight of 47,800 and a native molecular weight of 190,500. Porcine glutaryl-CoA dehydrogenase catalyzed the conversion of [1,5-14C]glutaryl-CoA to [14C] crotonyl-CoA and 14CO2 in a 1:1:1 ratio. The porcine enzyme has Km values for electron transfer flavoprotein and glutaryl-CoA of 1.1 and 3.3 microM, respectively, and turnover numbers of 860 mol of electron transfer flavoprotein/min/mol of glutaryl-CoA dehydrogenase and 327 mol of glutaryl-CoA/min/mol of glutaryl-CoA dehydrogenase. Human glutaryl-CoA dehydrogenase has been purified 1,278-fold from human liver mitochondria. The purified human enzyme has a subunit molecular weight of 58,800 and a native molecular weight of 256,000. Human glutaryl-CoA dehydrogenase showed a reaction of only partial identity when compared to porcine glutaryl-CoA dehydrogenase by Ouchterlony double immunodiffusion analysis using antiserum raised against and monospecific for porcine glutaryl-CoA dehydrogenase.  相似文献   

9.
Alcohol dehydrogenase has been purified from human liver by affinity chromatography. Ultracentrifugation, Sephadex G-200 chromatography, and amino acid analyses of multiple preparations demonstrate homogeneity of molecular weight. Sodium dodecyl sulfate disc gel electrophoresis reveals a single species of molecular weight 42 000. Based on a molecular weight of 85 000 for the dimer obtained from the amino acid composition and a molar absorptivity of A280nm0.1% = 0.58, the enzyme contains 3.6-4.2 g-atoms of zinc, as determined by emission spectrography, microwave-induced emission, and atomic absorption spectrometry. Inhibition by o-phenanthroline, (ethylenedinitrilo)tetraacetic acid, and alpha,alpha'-bipyridine demonstrates that zinc is essential to enzymatic function. Detailed kinetic analyses using primary alcohols of the homologous series CH3(CH2)nOH, n = 0-5, and the corresponding aldehydes as substrates show that KM values become smaller as n increases. This suggest that hydrophobic interactions play a role in substrate binding. The availability of well-defined preparations of human liver alcohol dehydrogenase now allows definitive genetic and functional studies of this enzyme to elucidate human ethanol metabolism.  相似文献   

10.
Two different techniques of glucosyltransferase immobilization were studied for the conversion of sucrose into isomaltulose. The optimum conditions for immobilization of Erwinia sp. glucosyltransferase onto Celite 545, determined using response surface methodology, was pH 4.0 and 170 U of glucosyltransferase/g of Celite 545. Using this conditions more than 60% conversion of sucrose into isomaltulose can be obtained. The immobilization of glucosyltransferase was also studied by its entrapment in microcapsules of low-methoxyl pectin and fat (butter and oleic acid). The non-lyophilized microcapsules of pectin, containing the enzyme and fat, showed higher glucosyltransferase activity, compared with lyophilized microcapsules containing enzyme plus fat, and also lyophilized microcapsules containing enzyme without fat addition. The non-lyophilized microcapsules of pectin containing the glucosyltransferase and fat, converted 30% of sucrose into isomaltulose in the first batch. However the conversion decreased to 5% at the 10th batch, indicating inactivation of the enzyme.  相似文献   

11.
Like human liver alcohol dehydrogenase, that of Macaca mulatta can be purified and separated into anodic and cathodic pyrazole-insensitive and cathodic pyrazole-sensitive enzyme forms. Their inhibition by 4-methylpyrazole and their substrate specificities are analogous to those observed for the corresponding isoenzymes of human liver. However, on the basis of data available so far, the physiochemical and compositional characteristics, i.e., molecular weight, zinc content, and dimeric structure, of all simian alcohol dehydrogenase forms are virtually identical with those of other mammalian alcohol dehydrogenases studied up to now. Zinc is essential for their enzymatic function, as demonstrated by inhibition with chelating agents.  相似文献   

12.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

13.
Summary Noncovalent complexes were formed by lyophilization of aqueous solutions containing horse liver alcohol dehydrogenase, NAD+ and a polymer [ethyl cellulose or poly(vinyl butyral)]. The complexes expressed higher specific catalytic activity in organic solvents as compared to a corresponding amount of enzyme deposited on to Celite or lyophilized enzyme powder. The noncovalent complexes were soluble in toluene. In butyl acetate and methyl t-butyl ether, suspensions of fine particles were formed.  相似文献   

14.
To study the severity and degree of in utero alcohol effects in relation to the rate of maternal alcohol damage, multiparous 1-year alcohol-fed rats were used, with an appropriate pair-fed control group. During pregnancy, alcoholic dams showed relatively high acetaldehyde levels (41 +/- 19 mumol/l) and blood alcohol levels of 22.8 +/- 14 mmol/l. They also showed marked histological alterations in liver as well as high serum aspartate-aminotransferase, alanine-aminotransferase, alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase activities. The increase in serum enzyme levels did not correlate with an increase in hepatic enzyme levels since only glutamate dehydrogenase was enhanced in liver after 1 year of alcohol intake. In addition, except for an increase in low Km aldehyde dehydrogenase activity, there were no changes in liver alcohol metabolizing enzymes in chronic alcohol vs. pair-fed females. Alcoholic rats showed a high incidence of damage in their progeny (resorptions, immature fetuses, decrease in fetal weight, etc.), and rats with the highest serum levels of the above enzymes (especially glutamate dehydrogenase and gamma-glutamyl transferase) had severely affected progeny. Rats with minimal histological liver damage, in contrast, did not show resorptions. Thus, the results presented suggest that the stage of maternal alcohol illness, as indicated mainly by the extent of liver damage, plays an important role in the frequency and severity of in utero alcohol effects in the rat.  相似文献   

15.
Methanol dehydrogenase from the thermotolerant Bacillus sp. C1 was studied by electron microscopy and image processing. Two main projections can be distinguished: one exhibits 5-fold symmetry and has a diameter of 15 nm, the other is rectangular with sides of 15 and 9 nm. Subsequent image processing showed that the 5-fold view possesses mirror symmetry. The rectangular views can be divided into two separate classes, one of which has 2-fold rotational symmetry. It is concluded that methanol dehydrogenase is a decameric molecule, and a tentative model is presented. The estimated molecular weight is 430,000, based on a subunit molecular weight of 43,000. The enzyme contains one zinc and one to two magnesium ions per subunit. N-terminal amino acid sequence analysis revealed substantial similarity with alcohol dehydrogenases from Saccharomyces cerevisiae, Zymomonas mobilis, Clostridium acetobutylicum, and Escherichia coli, which contain iron or zinc but no magnesium. In view of the aberrant structural and kinetic properties, it is proposed to distinguish the enzyme from common alcohol dehydrogenases (EC 1.1.1.1) by using the name NAD-dependent methanol dehydrogenase.  相似文献   

16.
Rat liver alcohol dehydrogenase shows characteristic sex-differences with respect to activity and heterotopy. For the recognition of gonadal influences on the intra-acinar distribution patterns luminometric determinations of ADH activity were carried out on 50-150 ng lyophilized liver tissue samples which had been microdissected along the sinusoidal length. Juvenile rats of both sexes showed equally high alcohol dehydrogenase activity, which surpassed the adult values by a factor of 2 in males and 1.3 in females. The distribution pattern was rather flat, with a weak maximum at the beginning of the last third of the sinusoid. Castration of adult male and female rats resulted in an increase of alcohol dehydrogenase activity to around the prepubertal values. The intra-acinar profiles showed a gradual increase in activity from low periportal values to a peak near the perivenous zone. Only the hepatocytes directly adjacent to the efferent venule showed an even lower activity. Administration of testosterone to castrated animals had no effect on the ADH activity in males and resulted in only a slight decrease of enzyme activity in females. The intra-acinar distribution patterns showed an intermediary peak at the end of the second third of the sinusoidal length in males and a gradual increase of activity, beginning periportally, in the direction of the perivenous zone in females. The present findings on total activity of ADH and its distribution patterns in the liver are considered to be the result of complex hormonal alterations rather than a specific effect of testosterone.  相似文献   

17.
A major carcinogenic aminoazo dye-binding protein having Ip of 9.7 (isoelectric focusing) was isolated from the liver cytosol of rats given 40 mg 3'MeDAB. The protein has the molecular weight of 6.8 × 104 (gel-filtration) and two subunits of about 3.9 × 104 molecular weight (SDS-polyacrylamide gel electrophoresis). The amino acid composition was similar to that reported for liver alcohol dehydrogenase of animals. The enzymatic activity was shown to be associated consistently with the dye-binding protein fractions throughout the purification steps suggesting identity of the dye-binding protein as liver alcohol dehydrogenase.  相似文献   

18.
Crystallographic investigations of horse liver alcohol dehydrogenase have demonstrated that NAD is not a passive participant in the redox reactions catalysed by the enzyme. On the molecular level NAD acts as an activator which induces an active form of the enzyme. This is mediated by a large conformational change, making the active site dehydrated and by providing one part of the substrate-binding cleft. The catalytic events, substrate binding, inhibitor binding and the role of the catalytic zinc ion are discussed in relation to the role of NAD. Human alcohol dehydrogenase isoenzymes which have very different substrate specificities are discussed in relation to sequence differences.  相似文献   

19.
Human erythrocyte aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) was purified to apparent homogeneity. The native enzyme has a molecular weight of about 210,000 as determined by gel filtration, and SDS-polyacrylamide gel electrophoresis of this enzyme yields a single protein and with a molecular weight of 51,500, suggesting that the native enzyme may be a tetramer. The enzyme has a relatively low Km for NAD (15 microM) and a high sensitivity to disulfiram. Disulfiram inhibits the enzyme activity rapidly and this inhibition is apparently of a non-competitive nature. In kinetic characteristic and sensitivity to disulfiram, erythrocyte aldehyde dehydrogenase closely resembles the cytosolic aldehyde dehydrogenase found in the liver of various species of mammalians.  相似文献   

20.
During hepatocarcinogenesis in the rat by the aminoazo dyes, a principal carcinogen-protein conjugate (azoprotein) is formed in liver cytosol from a normal target protein, whose identity and function are unknown. Based on similarities of amino acid compositions, molecular weights, and subunit sizes of azoprotein and liver alcohol dehydrogenases, others have proposed that liver alcohol dehydrogenase is the principal normal target protein of azocarcinogens during liver carcinogenesis in the rat.In the present study, specific antiserum precipitated the principal liver azoprotein and target protein, but failed to precipitate rat liver alcohol dehydrogenase. The ability of the antiserum to distinguish and to separate the azoprotein and target protein from alcohol dehydrogenase shows that this enzyme is not the principal target protein of the azocarcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号