首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.  相似文献   

2.
Membranes of Mycoplasma species take up 2–4 times more exogenous cholesterol than membranes of Acholeplasma species. To test whether the lower cholesterol uptake capacity of Acholeplasma is due to the high glycolipid content of their membranes, the phospholipids of Acholeplasma laidlawii and Mycoplasma capricolum membranes were hydrolyzed by phospholipase A2. Digestion removed about 30% of the polar lipids of A. laidlawii, leaving the glycolipids and phospholglycolipids intact, and about 70% of the polar lipids of M. capricolum, the residue consisting mostly of sphingomyelin. Cholesterol uptake by the treated membranes from phosphatidylcholine/cholesterol vesicles decreased in rough proportion to the amount of polar lipid removed, indicating that the glycolipids in A. laidlawii membranes can participate in cholesterol uptake.Trypsin digestion of growing cells and isolated membranes of M. capricolum decreased cholesterol uptake by about one-half. Similar treatment of A. laidlawii cells and membranes had no effect on cholesterol uptake. These findings suggest the existence of protease-sensitive receptors on the cell surface of M. capricolum responsible for tighter contact with the cholesterol/phosphatidylcholine vesicles. It is proposed that the ability of Mycoplasma species to take up large quantities of exogenous cholesterol and phospholipids depends on the presence of protein receptors for cholesterol donors, receptors which are absent in Acholeplasma species.  相似文献   

3.
The ATP-binding cassette transporters are a large family (~ 48 genes divided into seven families A–G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC “A” subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.  相似文献   

4.
In order to gain insight into interfacial properties of liposomes composed of egg-phosphatidylcholine (egg-PC) and dihexadecyl-phosphate (DHP) as a function of 0, 8, 15, 29, 38, 45 mol% of cholesterol, dynamic properties of two long-chain spin labels: TEMPO-stearate (2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl)-octa-decanoate) and TEMPO-stearamide (2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl)-octa-decanamide) were studied by CW-ESR spectroscopy. These spin labels reflect motional properties in the region of phospholipid head-groups.Two different environments of TEMPO-stearate were determined at 29, 38 and 45 mol% of cholesterol. In the newly formed domain above 29 mol%, N-O moiety of the spin label was surrounded by larger amount of bound water and experienced slower motion than in the cholesterol poor domain. The fraction of the second more hydrophilic environment of the spin label increased with cholesterol concentration. TEMPO-stearamide, a hydrogen-bond donor, reported more polar environment and slower motion than TEMPO-stearate even in the absence of cholesterol. Only one spin label environment was determined for all cholesterol concentrations. Slowing down of the TEMPO-stearamide motion was obtained even at 8 mol% of cholesterol.  相似文献   

5.
Erythrocyte ghosts were incubated with sonicated vesicles and the uptake of cholesterol by vesicles allowed to proceed to equilibrium. The experiments were carried out for a series of phospholipids at different temperatures. The equilibrium partition of cholesterol between ghosts and single shelled vesicles provided a measure of the relative affinities of cholesterol for the different phospholipids studied. It was found that the affinity of cholesterol for dipalmitoyl phosphatidylcholine was the same as that for N-palmitoyl sphingomyelin both at temperatures above and below the gel to liquid crystalline transition temperature of these phospholipids.  相似文献   

6.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

7.
Cryopreservation induces partially irreversible damage to equine sperm membranes. Part of this damage occurs due to membrane alterations induced by the membrane changing from the fluid to the gel-state as the temperature is reduced lower than the membrane transition temperature. One way to prevent this damage is to increase the membrane fluidity at low temperatures by adding cholesterol to the membrane. Different concentrations of cholesterol-loaded-cyclodextrins (CLC) were added to stallion sperm to determine the CLC concentration that optimizes cryosurvival. Higher percentages of motile sperm were maintained after thawing when 1.5 mg CLC was added to sperm from stallions whose sperm do not survive freezing well, compared to control sperm from those same stallions (67% vs. 50%; P<0.05). Addition of CLCs increased the percentages of membrane intact sperm surviving cryopreservation compared to untreated sperm for all stallions (P<0.05). The amount of cholesterol that incorporated into the membranes of the sperm cells increased in a polynomial fashion (R2=0.9978) and incorporated into all sperm membranes. In addition, there was a significant loss of cholesterol from sperm membranes after cryopreservation; however, addition of CLCs to sperm prior to cryopreservation maintained higher cholesterol levels in the sperm after freezing and thawing than untreated sperm (P<0.05). Addition of CLCs also resulted in more sperm binding to the zona pellucida of bovine oocytes after cryopreservation than control sperm (48 vs. 15; P<0.05). In conclusion, CLCs improved the percentage of post-thaw viability in equine sperm as well as increased the number of sperm that bind to zona pellucida. Addition of CLCs to stallion sperm prior to cryopreservation is a simple procedure that increases the cryosurvival of cells.  相似文献   

8.
Although the free radical-mediated oxidation of free cholesterol (FC) is critical in the generation of regulatory sterols and in atherogenesis, the physiological regulation of this process is poorly understood. We tested the hypothesis that sphingomyelin (SM), a major phospholipid of cell membranes, which is closely associated with FC, protects FC against oxidation, because of its unique structure, and affinity to the sterol. We employed phosphatidylcholine (PC) liposomes containing varying amounts of SM, and either radioactive FC or a fluorescent analog, dehydroergosterol (DHE), and determined the oxidative decay of the sterol in presence of 2,2′-azo-bis(2-amidinopropane hydrochloride) (AAPH). Incorporation of 25 mol% of SM in the liposomes inhibited the oxidation of FC or DHE by up to 50%. This inhibition was specific for SM among phospholipids, and was abolished by sphingomyelinase treatment. SM was not degraded during the oxidation reaction, and its effect was not dependent on the nature of the oxidizing agent, because it also inhibited sterol oxidation by FeSO4/ascorbate, and by cholesterol oxidase. These studies show that SM plays a physiological role in the regulation of cholesterol oxidation by free radicals.  相似文献   

9.
We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40 °C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10–700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4 °C.  相似文献   

10.
11.
A marine actinobacterial strain (designated as AKHSS) capable of producing cholesterol oxidase on the enzyme indicator plates was identified as Streptomyces sp. The cell-free lysate of the strain was used for monitoring the production of cholesterol oxidase and the maximal enzyme yields were recorded at 72 h post inoculation. The cholesterol oxidase was purified using polyethylene glycol 4000 precipitation, diethylaminoethyl Sephacel anionic column chromatography and Superdex-200 gel filtration to near homogeneity. Through electron-spray ionization mass spectrometry, molecular mass of the purified enzyme was recorded as 42.84 kDa. The optimum pH of the enzyme was found to be 9 and it was stable up to 60 °C. Metal salts like MgSO4 and ZnSO4 stimulated the enzyme activity. The Vmax and Km of the purified enzyme with cholesterol as substrate were found to be 1.22 μmoles/min/mL and 0.54 mM respectively. The enzyme showed significant cytotoxicity on breast (MCF-7), nasopharyngeal (KB) and ovarian (OVCAR) cancer cell lines at very low concentrations ranging from 0.093 to 0.14 μM, as evident from MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay. Besides, the enzyme exhibited relatively less cytotoxicity on primary mouse embryonic fibroblast (3T3) cells. Thus, cholesterol oxidase of Streptomyces sp. AKHSS could be a potential anticancer agent.  相似文献   

12.
A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.  相似文献   

13.
Sphingomyelin synthase (SMS) is an enzyme that catalyzes the transfer of phosphocholine from phosphatidylcholine to ceramide for sphingomyelin synthesis. Here, we show that SMS2 is palmitoylated at cysteine residues via thioester bonds in the COOH-terminal cytoplasmic tail. [3H]palmitic acid labeling of SMS1 or SMS2-overexpressing HEK293 cells revealed that SMS2, but not SMS1, is palmitoylated. Site-directed mutagenesis of cysteine residues to alanine ones indicated that the COOH-terminal cysteine cluster of the enzyme is palmitoylated. Mutation of all potential palmitoylation sites resulted in a dramatic reduction in the plasma membrane distribution of SMS2, whereas it did not affect the in vitro enzyme activity. These results suggested that this posttranslational modification is important for determination of the subcellular localization of SMS2.  相似文献   

14.
Most of the studies on the solubilization of model membranes by Triton X-100 (TR) involve one lipid. The aim of the present study was to evaluate the effect of the addition of cholesterol on the solubilization of bilayers made of palmitoyloleoylphosphatidylcholine (POPC) or dipalmitoylphosphatidylcholine (DPPC). Detailed investigation of the kinetics of solubilization of the cholesterol-containing bilayers by TR at different temperatures reveals that: (i) At 4 degrees C, solubilization of both systems is relatively slow. Hence, in order to prevent misleading conclusions from turbidity measurements it is important to monitor the solubilization after steady-state values of optical density (OD) are reached. (ii) Studies of the temperature-induced changes of the aggregates present in mixtures of TR, POPC and cholesterol indicate that the state of aggregation at all temperatures (including 4 degrees C) represents equilibrium. By contrast, for DPPC/cholesterol/TR mixtures "kinetic traps" may occur not only at 4 degrees C but at higher temperatures as well (e.g. 37 degrees C). (iii) The presence of cholesterol in POPC bilayers makes the bilayers more resistant to solubilization at low temperatures, especially at 4 degrees C. As a consequence, the temperature dependence of the TR concentration required for complete solubilization (Dt(sol)) is no longer a monotonically increasing function (as for POPC bilayers) but a bell-shaped function, with a minimum at about 25 degrees C. Inclusion of cholesterol in DPPC bilayers makes the bilayers more resistant to solubilization at all temperatures except 4 degrees C. In this system, we observe a bell-shaped dependence of Dt(sol) on temperature, with a minimum at 37 degrees C. (iv) Both the rate of vesicle size growth and the rate of the solubilization of POPC vesicles are not affected by the inclusion of cholesterol in the bilayers. Similarly, cholesterol did not affect significantly the rate of size growth of DPPC bilayers at all temperatures, but reduced the rate of solubilization at 4 degrees C.  相似文献   

15.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

16.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

17.
We have presented a series of lipid constructs as models of the sperm plasma membrane. We also isolated the plasma membrane from rabbit sperm cells and characterized the lipid composition. The behavior of these various membrane systems was evaluated using a vesicle leakage assay, in which surfactant (nonoxynol-9, N-9; or benzalkonium chloride, BZK) exposure induced membrane permeabilization. These studies shed light on the relative importance and significance of particular components present in the lipid constructs. In particular, a highly unsaturated phospholipid component characterized by an ether-linkage to position 1 of the glycerol backbone (as opposed to the more conventional ester linkage) as well as the presence of sulfogalactosyl ceramide were found to have an effect on the surfactant-induced leakage response. The presence of cholesterol had the greatest influence on membrane behavior. The construct series also demonstrated the ability of the surfactants studied to discriminate between different membrane systems. We found that N-9 displayed little sensitivity to membrane composition while BZK showed specific behavior with the various membrane systems.  相似文献   

18.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   

19.
The susceptibility of the band 3 protein of the erythrocyte membrane to proteolytic digestion at either surface of the membrane was not altered when the membrane cholesterol level was increased by 65–103%. Cross-linking of the major membrane proteins by o-phenanthroline · Cu, glutaraldehyde, dimethylsuberimidate and dimethyladipimidate was also unaffected.  相似文献   

20.
The precise mechanism by which galectin-3 and other cytosolic proteins that lack signal peptides are secreted is yet to be elucidated. In the present analyses, we determined that galectin-3, a beta-galactoside binding protein, can interact directly with membrane lipids in solid phase binding assays. More interestingly, we determined by spectrophotometric methods that it can spontaneously penetrate the lipid bilayer of liposomes in either direction. These findings suggest that galectin-3 on its own has the capacity to traverse the lipid bilayer. Whereas the situation is rather simplified in liposomes, the interaction of galectin-3 with the plasma membrane may involve cholesterol-rich membrane domains where galectin-3 can be concentrated and form multimers or interact covalently with other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号