首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adgo  Enyew  Schulze  Joachim 《Plant and Soil》2002,239(2):291-299
Dinitrogen (N2) fixation and assimilation efficiency in a German and two Ethiopian varieties of Pisum sativum L. was studied in a pot experiment during vegetative and reproductive growth. The objective of the study was to assess whether genotypes having contrasting growth habits showed differences in physiological processes that affect the efficiency of N2 fixation and assimilation. Dry matter formation, nodulation and nitrogen assimilation were compared between two treatments where one depended solely on N2 fixation while the other was nourished with nitrate. Moreover, carbon (C) costs of N2 fixation and the capacity of different respiratory chains in roots and nodules were determined at vegetative and reproductive growth. As compared to the Ethiopian cultivars, the German variety displayed a more rapid vegetative growth with intensive N2 fixation and assimilation and highly efficient individual nodules. However, during reproductive growth, N2 fixation in the German variety declined sharply, while continuing in the Ethiopian varieties. Lowest C costs of N2 fixation coincided with most efficient individual nodules in both growth intervals. C costs of N2 fixation were lower during reproductive growth in all varieties which was accompanied by a shift in root/nodule respiratory capacity towards more C efficient respiratory pathways. The results provide further evidence that unreliable nitrogen fixation rates during reproductive growth of pea can be connected with restricted C supply to nodules. One strategy of pea plants to adapt to critical C availability is an increase in capacity of more C efficient root/nodule respiration.  相似文献   

2.
Soybean (Glycine max [L.] Merr.) N2 fixation is a primary plant mechanism responsible for meeting plant-N demand during seed development. Nitrogen fixation is recognized as a drought-sensitive mechanism; however, N2 fixation response to water deficit and N2 fixation recovery at different reproductive stages are not well documented. We tested the hypothesis that water deficit during late reproductive stages would inhibit N2 fixation and lead to the breakdown of essential leaf proteins and an inability to recover N2 fixation. Acetylene reduction activity (ARA) and N redistribution response to a 5-d drought period at flowering (R2), early seed fill (R5), and late seed fill (R6) were evaluated in one genotype (Hendricks, maturity group 0). Control plants maintained high rates of nodule activity until late seed fill. Plants drought stressed at R2 and R5 recovered ARA after rewatering and in some cases had higher nitrogenase activity than control plants during mid-seed fill. Recovery of ARA on plants stressed at R2 and R5 was associated with higher shoot N concentration than control plants at maturity. Drought stress at R6 reduced ARA, and the inability to recover ARA after stress alleviation at R6 resulted in decreased individual seed mass, which was likely caused by an acceleration of leaf N redistribution and a shorter seed-fill period. Results emphasized the importance of soybean N2 fixation during late seed development on seed yield and that the ability to recover N2 fixation following drought is dependent upon crop developmental stage.  相似文献   

3.
Serraj  Rachid  Sinclair  T.R. 《Plant and Soil》1998,202(1):159-166
Both nodulation and nitrogen fixation in soybean [Glycine max (L.) Merr.] are sensitive to soil drying, which can have important negative effects on yield. An exception to this general response has been the identification of the cultivar Jackson as being drought tolerant for N2 fixation. The objectives of this research were to examine nodule formation and growth in Jackson among other soybean cultivars in response to soil drying under field conditions. Two field experiments were conducted to examine the genetic variation in the sensitivity of nodule numbers and dry weights to soil drying. Substantial variation among soybean lines was found, and the drought-tolerance trait was demonstrated again in Jackson. Greenhouse experiments were conducted to further analyze the variation of nodulation response to soil water content. The differences among cultivars observed in the field were confirmed in the greenhouse. Importantly, the relative drought insensitivity of N2 fixation in cultivar Jackson was associated with high individual nodule dry weight under drought conditions, relative to well-watered plants. It was concluded that large variation in nodulation sensitivity to water deficit exists among soybean cultivars and that the response of N2 fixation rates to drought is related in part to nodule formation and growth.  相似文献   

4.
The influence of seed and soil inoculation on bradyrhizobial migration, nodulation, and N2 fixation was examined by using two Bradyrhizobium japonicum strains of contrasting effectiveness in N2 fixation. Seed-inoculated strains formed fewer nodules on soybeans (mostly restricted to the tap and crown roots within 0 to 5 cm from the stem base) than did bradyrhizobia distributed throughout the soil or inoculated at specific depths. Nodulation was greater below the depths at which bradyrhizobial cells were located rather than above, even though watering was done from below to minimize passive bradyrhizobial migration with percolating water. The most profuse nodulation occurred within approximately 5 cm below the point of placement and was generally negligible below 10 cm. These and other results suggest that bradyrhizobial migration from the initial point of placement was very limited. Nevertheless, the more competitive strain, effective strain THA 7, migrated into soil to a greater extent than the ineffective strain THA 1 did. Nitrogen fixation resulting from the dual-strain inoculations differed depending on the method of inoculation. For example, the amount of N2 fixed when both strains were slurried together onto the seed was about half that obtained from mixing the effective strain into the soil with the ineffective strain on the seed. The results indicate the importance of rhizobial distribution or movement into soil for nodulation, nodule distribution, strain competitiveness, and N2 fixation in soil-grown legumes.  相似文献   

5.
Gan  Yinbo  Stulen  Ineke  van Keulen  Herman  Kuiper  Pieter J.C. 《Plant and Soil》2004,258(1):281-292
Nitrate N is a major inhibitor of the soybean/Bradyrhizobium symbiosis in legumes and although this inhibition has been studied for many years, as yet no consensus has been reached on the specific and quantitative interactions between nitrate and ammonium supply and N2 fixation. The effect of nitrate and ammonium supply on plant growth, nodulation and N2 fixation capacity during the full growth cycle was investigated in both greenhouse and growth chamber experiments with three soybean genotypes. The results show that a high concentration of mineral N (10 mM), either as nitrate or ammonium or ammonium nitrate significantly suppressed nodule number, nodule dry weight and total N2 fixed per plant of nodulated soybeans. However, lower mineral N concentrations, either 1 mM or 3.75 mM significantly enhanced nodule number, nodule dry weight and total N2 fixed per plant, while specific nodulation (nodule dry weight g–1 root DW, SNOD) and specific N2 fixation (total N2 fixed g–1 root DW, SNF) were significantly reduced, particularly at the early vegetative growth stage V4, compared to the treatment with N2 fixation as the only N source, in both growth chamber and greenhouse experiments. Therefore, we suggest that SNOD or SNF might be better indicators to express the suppressing effect of mineral N addition on nodule performance and N2 fixed. Our studies also showed that ammonium alone was the more efficient N source than either ammonium nitrate or nitrate for soybean, as it resulted in higher biomass accumulation, nodule dry weight, total N accumulation and total N2 fixed by 23, 20, 18 and 44%, respectively, compared to NO3 as the N source.  相似文献   

6.
Eighty soybean cultivars were assessed for their potential for nodulation and nitrogen fixation with indigenous rhizobia in a Nigerian soil. Seventy-six days after planting (DAP) 87%, 3% and 10% of the soybean cultivars had from 0 to 30, 31 to 60 and over 61 nodules/plant, respectively. Only 8% had a nodule dry weight of 600 to 1100 mg/plant. At 84 DAP the proportion of nitrogen derived from the atmosphere (Ndfa) ranged from 0 to 65% 16% of the cultivars derived 51 to 65% of their N2 from the atmosphere. The diversity of soybean germplasm and the variation in nodulation and N2 fixation permitted the selection of the five best cultivars in terms of their compatibility with indigenous rhizobia, % Ndfa and the amount of N2 which they fixed.  相似文献   

7.
Nodulation, acetylene reduction activity, dry matter accumulation, and total nitrogen accumulation by nodulated plants growing in a nitrogen-free culture system were used to compare the symbiotic effectiveness of the fast-growing Rhizobium fredii USDA 191 with that of the slow-growing Bradyrhizobium japonicum USDA 110 in symbiosis with five soybean (Glycine max (L.) Merr.) cultivars. Measurement of the amount of nitrogen accumulated during a 20-day period of vegetative growth (28 to 48 days after transplanting) showed that USDA 110 fixed 3.7, 39.1, 4.6, and 57.3 times more N2 than did USDA 191 with cultivars Pickett 71, Harosoy 63, Lee, and Ransom as host plants, respectively. With the unimproved Peking cultivar as the host plant, USDA 191 fixed 3.3 times more N2 than did the USDA 110 during the 20-day period. The superior N2 fixation capability of USDA 110 with the four North American cultivars as hosts resulted primarily from higher nitrogenase activity per unit nodule mass (specific acetylene reduction activity) and higher nodule mass per plant. The higher N2-fixation capability of USDA 191 with the Peking cultivar as host resulted primarily from higher nodule mass per plant, which was associated with higher nodule numbers. There was significant variation in the N2-fixation capabilities of the four North American cultivar-USDA 191 symbioses. Pickett 71 and Lee cultivars fixed significantly more N2 in symbiosis with USDA 191 than did the Harosoy 63 and Ransom cultivars. This quantitative variation in N2-fixation capability suggests that the total incompatibility (effectiveness of nodulation and efficiency of N2 fixation) of host soybean plants and R. fredii strains is regulated by more than one host plant gene. These results indicate that it would not be prudent to introduce R. fredii strains into North American agricultural systems until more efficient N2-fixing symbioses between North American cultivars and these fast-growing strains can be developed. When inoculum containing equal numbers of USDA 191 and of strain USDA 110 was applied to the unimproved Peking cultivar in Perlite pot culture, 85% of the 160 nodules tested were occupied by USDA 191. With Lee and Ransom cultivars, 99 and 85% of 140 and 96 nodules tested, respectively, were occupied by USDA 110.  相似文献   

8.
The effects of the herbicide methabenzthiazuron (175 and 220 g ha-1) on vegetative and reproductive growth, nodulation and nitrogenase activity of Vicia faba were studied in the field under Mediterranean conditions. Nitrogenase activity of excised nodules was estimated using the acetylene reduction assay four times during the developmental period. Leaf area index, dry weight and nitrogen content of the different parts of the plants were measured. Methabenzthiazuron-treated plants showed an increase in nodulation, nitrogenase activity and vegetative growth at early pod fill. Methabenzthiazuron also caused an increase in leaf N content and fruits. These were transient effects found during early and mid pot fill. Nevertheless, plants treated with these sublethal doses of herbicide improved seed production and nitrogen content of seeds at harvest time. The stimulatory effect of methabenzthiazuron on N2 fixation and vegetative growth seems not be related with the transient stimulatory effect on photosynthetic capacity, also caused by the herbicide, since the stimulatory effect on N2 fixation was apparent during pod fill, when photosynthetic capacity declined and was not modified by methabenzthiazuron.  相似文献   

9.
The complex nature of plant resistance to adverse environmental conditions, such as salinity and drought requires a better understanding of the stress-induced changes that may be involved in tolerance mechanisms. Here we investigate stress-related morpho-physiological effects during vegetative and reproductive growth in two Japonica rice cultivars (Bomba and Bahia) exposed to a range of NaCl concentrations from the seedling stage. The stress-related detrimental effects were observed either earlier or to a higher extent in cv. Bomba than in Bahia. Damages to the photosynthetic apparatus were related to loss of chlorophyll (Chl) and to a decrease of the maximum potential efficiency of PSII (F v /F m), affecting negatively net CO2 assimilation rate (P N). Stress-related leaf anatomical alterations were analysed during the vegetative and reproductive stages. The size of bulliform cells as well as dimensions related to the vascular system increased under mild stress but decreased in the longer term or under higher stress level. The pattern of the anatomical alterations observed at the reproductive stage under 20 mM NaCl was reflected in poor panicle development and yield loss, with effects more pronounced in cv. Bomba than in Bahia. In summary, our results show that some physiological and, particularly, leaf anatomical responses induced by NaCl stress are distinctive indicators of sensitivity to salt stress in rice cultivars.  相似文献   

10.
Water-stress for 10d at different developmental stages, affected relative water content and leaf water potential of plants. Subsequent rewatering removed these effects. Water stress lowered the contents of chlorophyll, protein, RNA and the activity of catalase, while it increased free proline accumulation and activities of protease, RNase and peroxidase. An overall improvement in biochemical parameters was achieved as soon as the stress was withdrawn by watering and this was reflected in subsequent developmental stages. Water-stress at the reproductive stages induced similar changes as in the vegetative stage but the removal of stress could not improve these parameters to the same extent as at the vegetative stage. In consequence, stress applied at the vegetative stage augmented yield parameters but when applied at the reproductive stage it significantly reduced the yield.  相似文献   

11.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

12.
Growth, nodulation and N2 fixation inGlycine max L. Merr., cv. Biison as affected by the relative humidity of air (RH) during the dark period (95 or 50 – 65 %) and day/night root temperature (Tr) (28/28, 25/25, 18/18, 22/28, 22/18 °C) were studied. The growth parameters (plant fresh and dry mass, yield), nodulation (nodule number and fresh mass) and N2 fixation abilities (total nitrogen content, nitrogenase activity) increased significantly with the increasing Tr. In addition, at the same Tr during the day all studied parameters were increased at the higher Tr during the dark period. Growth, nodulation and N2 fixation were significantly enhanced at low RH. The findings indicate that all studied parameters could be regulated by environmental factors during the dark period.  相似文献   

13.
Nine cultivars of common bean were grown in the presence of a natural microflora without exogenous rhizobial inoculation. Nodules were harvested 30 days post planting (early flowering stage) and the presence of trehalose determined. Amounts present varied according to cultivar and were between 0.20 and 1.63 mg g−1 nodule dry weight. Rhizobial strains were isolated from the nodules of three selected cultivars (Canario 101, Flor de Mayo Bajio and Flor de Mayo 38). Trehalose levels in nodules produced after either mixed strain reinfection, or after axenic homologous reinfection or after axenic cross‐reinfection could be manipulated by applying drought stress. Mixed reinfection nodules from stressed plants accumulated between two and six times the trehalose concentration found in non‐stressed control plants. After axenic cross‐reinfection up to 48‐fold increases in nodule trehalose content were recorded during drought stress. Those cultivars exhibiting high nodule trehalose levels and/or a high degree of trehalose stimulation in response to drought stress also exhibited a high leaf relative water content and were also the most drought resistant. During drought stress nodule trehalase levels rose only slightly.  相似文献   

14.
Dry matter accumulation, nitrogen content and N2 fixation rates of soybean (Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to a pO2 of 5, 10, 21, or 30% and a pCO2 of 300 μl CO2/l or a pO2 of 21% and a pCO2 of 1200 μl CO2/l during the complete growth cycle were measured. Total N2[C2H2] fixed was increased by CO2/O2 ratios greater than those in air and was decreased by ratios smaller than those in air; the effects on N2 fixation of decreased pO2 or elevated pCO2 were quantitatively similar during the period of vegetative growth. Decreased pO2 produced a smaller increase then elevated pCO2 during the reproductive period, presumably because of the decreased sink activity of the arrested reproductive growth under subambient pO2. At a pO2 of 5% and a pCO2 of 300 μl CO2/l total N2 fixed was increased 125% and per cent nitrogen content in the vegetative parts was increased relative to air while that in the seed was decreased. Dry matter production was increased and reproductive growth was arrested as previously reported for plants receiving only fertilizer nitrogen. At a pO2 of 30% and a pCO2 of 300 μl CO2/l total N2 fixed was decreased 50% and per cent nitrogen content in the vegetative part was increased relative to air while that in the reproductive structures was unaffected. Dry matter production was similarly decreased in both vegetative and reproductive structures. These effects of altered pO2 in the aerial part on N2 fixation are consistent with the hypothesis that the amount of photosynthate available to the nodule may be the most significant primary factor limiting N2 fixation while sink activity of the reproductive structures may be a secondary factor.  相似文献   

15.
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (A N) and stomatal conductance (g s) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.  相似文献   

16.
Relative competition among various plant parts for N during water stress,i.e. nitrogen distribution index (NDI) was determined in relation to specific nitrogenase activity (SNA) and nodule and soil nitrogen in both indeterminate (H-77-216) and determinate (ICPL-151) types of pigeonpea (Cajanus cajan L.) under greenhouse conditions. Two levels of water stress,i.e. moderate (soil Ψw) -0.77 MPa) and severe (soilΨw -1.34 MPa) were created by witholding the irrigation at vegetative (40 DAS) and flowering (70 DAS) stages. At vegetative stage under moderate stress the highest NDI was in nodules of cv. H-77-216 and in leaf of cv. ICPL-151. Under severe stress both the cultivars showed negative values of NDI, with maximum loss of N from root and nodules. Cultivar ICPL-151 behaved differently at flowering and vegetative stages. Very high loss of N from different plant parts was seen at flowering under severe stress. All the plant parts showed gain in N during rehydration. Loss and gain in N at both the stages under stress and rehydration respectively, correlated with available N in soil. Specific nitrogenase activity (SNA) and nodule N were maximum at moderate stress and related with NDI values of leaf and nodules.  相似文献   

17.
Physio-anatomical traits of rootstock have been considered as determinants of vigor in grafted plants. We evaluated how hydraulic traits of three Prunus avium cultivars grown on the same rootstock are related to tree growth and patterns of biomass allocation between vegetative and reproductive parts as well as total water consumption to determine how water, as a limiting resource for agriculture, might be optimized by choosing appropriate cultivars that are at the same time the most successful from the point of view of fruit production. Bing, Lapins and Van cultivars growing under field- and well-irrigated conditions were selected. Leaf and stem hydraulic conductance (K Leaf and k S), leaf vulnerability to cavitation, water relations traits, water use and assimilation and growth rates as well as fruit yield were measured. The cultivar with high leaf vulnerability to cavitation and low k S and sap flow (Lapins) had low vegetative growth, but larger fruit production compared to the cultivars with higher k S, resistance to cavitation and water use (Bing and Van). As leaf water potential and k S were lower and leaves appeared to be embolized in the cultivar that had lower carbon allocation to vegetative organs during the reproductive period (Lapins), we hypothesize that water instead of moving into the leaves is delivered to the fruits, representing the main sink for water transport. It is possible that increases in the dysfunction of the hydraulic system in the most vulnerable cultivars to cavitation during the reproduction stage (Lapins) may represent a signal for enhancing the delivery of water to fruits. This information related to optimization of crop water use in relation to yield can be useful for selecting cultivars with high yield and low water use. This study also shows that physiological traits of the scions substantially affect growth patterns, fruit production and water relation of the plants.  相似文献   

18.
Summary Lucerne, red clover and white clover were grown at two atmospheric concentrations of CO2 (300 and 1000 μl l−1) and the effects on N2 fixation, nodule mass/number and root/shoot dry matter production determined. Pea plants were similarly evaluated as a comparison with grain legumes. CO2 enrichment increased N2 fixation activity in all cases but activity/unit nodule mass was significantly increased only in the pea. The enhancement of N2 fixation in herbage legumes by CO2 enrichment reflected an increase in nodule mass which in turn was attributed to increased nodule number, and results show that under the experimental conditions obtaining here photosynthate supply did not limit nodule N2 fixation in these plants though it was limiting in the case of peas. White clover growing in a 6 and 14 hour photoperiod was studied for response of the N2 fixing system to light. Long photoperiod (14 hour) plants assayed at constant temperature (20°C) did not show a significant response to light at the end of the dark period either in terms of fixation per plant or per unit nodule mass, in contrast with short photoperiod (6 hour) plants which showed significant responses. Short photoperiod plants compensated for reduced photosynthates by maintaining only half the root nodule mass and fixation activity of 14 hour photoperiod plants though plants in both systems supported similar rates of N2 fixation per unit mass of nodule during the photoperiod. Comparison of N2 fixation activities in whole and decapitated plant systems indicates the importance of shoot reserves for sustaining nitrogenase activity in white clover during short-term interruption of photosynthesis. These results support the conclusion of the CO2 enrichment studies, that herbage legumes have the potential for supplying their nodule photosynthate requirements for sustaining optimum rates of N2 fixation and excess carbon supply is used solely to promote further nodulation. Nodules of short photoperiod white clover plants were less efficient in N2 fixation in that they evolved more H2 relative to N2 (C2H2) reduced than did long photoperiod plants.  相似文献   

19.
In areas with a short growing season the poor adaptability of soybean [Glycine max Meer. (L.)] to cool soil conditions is considered the primary yield limiting factor. Soybean requires temperatures in the 25 to 30°C range for optimum N2-fixation and yield. Field studies were conducted in 1990 and 1991 at Montreal, Quebec to determine whether adaptability to cool soil conditions, with respect to earlier symbiosis establishment and function, existed among either Bradyrhizobium strains or soybean genotypes. An early maturing isoline of the soybean cultivar Evans and the cultivar Maple Arrow were inoculated with one of four strains isolated from the cold soils of Hakkaido, northern Japan, or the commercially used strains 532C or USDA110, at two planting dates. Plot biomass and nodulation were assessed at seedling (V2), and flowering(R2) growth stages and harvest maturity. Soybean genotypes did not differ for pre-flowering nodulation or N2-fixation in the cool spring conditions of the first year. Seasonal N2-fixation rates were also determined at the final harvest by the N-balance and 15N-isotope dilution methods. Significantly higher symbiotic activity was found for two of the four Hakkaido strains and was reflected in higher final soybean seed yield and total N2-fixation for the growing season, as compared to the two commercial strains. Planting 14 days earlier resulted in greater early vegetative and total seasonal N2 fixation and yield in the second year when soil temperatures were warmer, emphasizing the need for the development of soybean-Bradyrhizobium combinations superior in nodule development and function under cool soil conditions.  相似文献   

20.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,250(1):155-165
N2-fixation is sensitive to limitation in the availability of newly synthesised carbohydrates for the nodules. We decided to explore the response of the D. trinervis - Frankia symbiosis to a transient decrease in carbohydrate supply to nodules. Feedback inhibition of nodulation as well as nodule growth was not released by a 6-day dark stress in D. trinervis nodulated plants. However, nitrogen fixation and assimilation were affected by the imposed stress. Nitrogenase activity was totally inhibited after 4 days of darkness although high levels of nitrogenase components were still detected at this time. Degradation of FeMo and Fe nitrogenase subunits – both at similar rates – was observed after 6 days of dark stress, revealing the need for inactivation to precede enhancement of protein turnover. Glutamine synthetase (GS), malate dehydrogenase (MDH) and asparagine synthetase (AS) polypeptides were also degraded during the dark stress, although at a lower rate than nitrogenase. ARA and nitrogenase were totally recovered 8 days after resuming normal illumination. It seems that current nitrogenase activity and ammonium assimilation are not, or are only weakly linked with the feedback control of nodulation in D. trinervis. These observations give support to the persistence of an autoregulatory signal in mature nodules that is not sensitive to transient shortages of carbon supply and sustains the inhibition of nodulation in the transient absence of N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号