首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cell wall fraction isolated from epicotyls of Vigna angularis,which contained both ionically and covalently bound peroxidases,rapidly oxidized p-coumaric, caffeic and ferulic acids and slowlyoxidized sinapic acid. The oxidation of sinapic acid was greatlyenhanced in the presence of p-coumaric, caffeic or ferulic acid.Ascorbate (20 µM) inhibited the oxidation of ferulic acidby about 70% and completely inhibited the oxidation of p-coumaricand ferulic acids. The cell wall fraction was capable of bindingferulic and sinapic acids but not caffeic acid. p-Coumaric acidbound only slightly to cell walls. The oxidation of p-coumaricand ferulic acids by KCl-washed cell walls was inhibited byabout 60% and 10%, respectively, by 20 µM ascorbate, butthe oxidation of caffeic acid was completely inhibited by ascorbateat less than 20 µM. The oxidation of derivatives of hydroxycinnamicacid by peroxidases released from cell walls by washing with1 M KCl was completely inhibited by ascorbate. These resultssuggest that the inhibition by ascorbate depends on the substituentgroup of the phenyl ring of the derivatives of hydroxycinnamicacid when the oxidation reaction is catalyzed by cell wall-boundperoxidases and that the oxidation of sinapic acid is mediatedby phenoxyl radicals of derivatives of hydroxycinnamic acidother than sinapic acid. (Received December 2, 1993; Accepted March 3, 1994)  相似文献   

2.
The cell walls in the elongating zone of submerged floating rice internodes show high susceptibility to expansins. When internode sections corresponding to such an elongation zone were incubated for 24 h under osmotic stress conditions produced by treatment with 100 mM polyethylene glycol 4000 (PEG), the cell wall susceptibility to expansins remained at its initial level, while the susceptibility of internode sections incubated under unstressed conditions decreased considerably during the same period. The contents of polysaccharides and phenolic acids as ferulic, diferulic and p-coumaric acids in the cell walls of internode sections increased substantially under unstressed conditions, but the increases were almost completely prevented by osmotic stress. Ferulic acid applied to internode sections under osmotic stress reduced the susceptibility of the cell walls to expansins and increased the levels of ferulic and diferulic acids in the cell walls, with little effect on the accumulation of polysaccharides. In contrast, applied p-coumaric acid increased the level of p-coumaric acid in the cell walls without a change in the levels of ferulic and diferulic acids but did not reduce the susceptibility to expansins. These results suggest that the deposition of ferulic and diferulic acids is a primary determinant in regulating the reduction of the susceptibility of cell walls to expansins in floating rice internodes.  相似文献   

3.
Naoto Shibuya 《Phytochemistry》1984,23(10):2233-2237
Ferulic acid, p-coumaric acid and diferulic acid were detected in the alkaline extract of rice endosperm cell walls. The amount of each component was estimated as 9.1, 2.5 and 0.56 mg/g cell wall, respectively. Several phenolic-carbohydrate esters were isolated from the enzymatic digest of this cell wall, which included a series of ferulic acid esters of arabinoxylan fragments and also some fractions containing a high proportion of diferulic acid.  相似文献   

4.
Summary Two different antibodies against bovine serum albumin (BSA)-p-coumaric acid-conjugates were produced and used to localize phenolic compounds in exines of pollen from different species,p-Coumaric acid (pC) was coupled to BSA either via the carboxy group (BSA-pC) or directly to the aromatic ring system (BSA-azopC). The polyclonal antibodies raised in rabbits were characterized by ELISA with homologous and heterologous antigens using turkey ovalbumin as carrier protein. The results showed that the two immune sera directed against BSA-pC and BSA-azo-pC, respectively, were specific forp-coumaric acid and structurally similar compounds. Only a very poor binding by acetic acid-ovalbumin-conjugates and no binding by turkey ovalbumin was detectable. The antibodies reacted with partially purified pollen walls and with highly purified exines. The intensity of the immune reaction was proved to be dependent upon the pollen source and the preparation of the pollen walls. Using light and electron microscopy, it was shown for the first time that, in the exines ofCucurbita maxima, antibody binding was predominantly observed in the region of the germ pore apertures, the outer foot layers, and in the micro- and macrospines. We conclude from this and other earlier published data that phenols are important structural compounds of sporopollenin.Abbrevations AA acetic acid - BA benzoic acid - BSA bovine serum albumin - BSA-azo-pC p-coumaric acid coupled in meta position to BSA by a diazo reaction - BSA-azo-pC I immune serum against BSA-azo-pC - BSA-pC p-coumaric acid coupled to BSA via the COOH-group - BSA-pC I immune serum against BSA-pC - FA ferulic acid - OVA ovalbunin from turkey - pC p-coumaric acid - pHY p-hydroxybenzoic acid - SA sinapic acid - SYA syringic acid - TAT TBS-azide-Tween-buffer - TFA trifluoroacetic acid - VA vanillic acid  相似文献   

5.
Phytochemical characterization of the major phenolic compounds and their ultrastructural localization were carried out on onion roots (Allium cepa L.) colonized by two vesicular-arbuscular mycorrhizal (VAM) fungi: Glomus intraradix Schenck & Smith and G. versiforme (Karst.) Berch. Free and wall-bound forms of phenolic components were quantified in relation to the duration of symbiosis. Both ferulic and p-coumaric acids, as well as N-feruloyltyramine were identified as the major phenolic metabolites bound to the cell walls of VAM onion roots. Results from mycorrhized and control plants suggest the presence of a mechanism leading to the oxidative condensation of phenols, the latter process depending on the presence or absence of symbiosis. Bioassays reveal that N-feruloyltyramine induces the branching of hyphae and reduces total fungal development. The overall results lead us to suggest that the progressive binding of phenolic compounds in VAM roots is directly involved in the control of VAM endophytic establishment and development, as it gradually reduces the plasticity and elasticity of the symbiotic matrix. Phenolic compounds bound to cell walls could also be indirectly responsible for the resistance of VAM roots to pathogenic fungi, since they result in increased resistance by the cell wall to the action of digestive enzymes.Presented in part at the 31st Annual Meeting and Symposium of the Phytochemical Society of North America, Fort Collins, Colo., June 1991  相似文献   

6.
The root cell walls of the resistant cultivars of the date palm were more resistant to the action of the cell wall-degrading enzymes (CWDE) of Fusarium oxysporum f. sp. albedinis than those of the susceptible cultivars. Date palm roots contain four cell wall-bound phenolics identified as p-hydroxybenzoic acid, p-coumaric acid, ferulic acid and sinapic acid. The contents of p-coumaric acid and ferulic acid in the resistant cultivars (IKL, SLY, BSTN) were about 2 times higher than those in the susceptible cultivars (BFG, JHL, BSK). The contents of p-hydroxybenzoic acid and sinapic acid in the resistant cultivars were 8.4 and 4.5 times, respectively, higher than those in the susceptible cultivars. The lignin contents in roots of the resistant cultivars were 1.8 times higher than those of the susceptible cultivars. The cell wall-bound phenols accumulated particularly in resistant cultivars reduced strongly the mycelial growth and the CWDE production in vitro.  相似文献   

7.
Cell walls separated from the aerial parts of Lolium multiflorum, Lolium perenne and Phleum pratense contained bound cis and trans ferulic and p-coumaric acids and diferulic acid which were released from the walls by treatment with sodium hydroxide. The total content of these acids in L. multiflorum ranged from 5 to 16.8 mg/g of wall, the trans-ferulic acid content varying between 2.8 and 8.9 mg/g of wall. In addition, small amounts of p-hydroxybenzoic acid were released from senescent leaf blade plus sheath parts. Cell walls from legume species gave much smaller amounts of the acids, the total content of aerial parts of Trifolium pratense being <0.8 mg/g of wall. The degra dability of the cell walls with a commercial cellulase preparation was determined and the water-soluble phenolic compounds released were estimated by UV absorption spectroscopy.  相似文献   

8.
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.  相似文献   

9.
Upon irradiation an increase in the extractable activity of hydroxycinnamoyl-CoA:d-quinate hydroxycinnamoyl transferase (CQT) and a decrease in the activity of hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (CST) was observed in cell suspension cultures and seedling of carrot (Daucus carota L). Conversely, CST was induced and CQT repressed in the cell cultures upon treatment with fungal elicitor (i.e. cell wall preparations from Phytophthora megasperma). In the cell cultures irradiation led to a continuous accumulation of 5-O-caffeoyl-d-quinic (chlorogenic) acid, while a transient accumulation of 5-O-caffeoylshikimic acid took place in response to elicitor treatment. Cell wall bound 4-hydroxybenzoic, 4-coumaric and also ferulic acid were increased after treatment with Pmg elicitor. These wall bound phenolics may be involved in protection against microbil attack.  相似文献   

10.
Studies of phenolic compounds were performed during cell suspension cultures in relation with the induction of embryogenic structures in two cultivars of cotton. Coker 312 produced embryogenic structures, unlike R405-2000 which was found to be a non-embryogenic cultivar. Embryogenesis induction in Coker 312 was strongly linked to a higher content of caffeic, ferulic and salicylic acids and to the appearance of p-coumaric acid, benzoic acid, trans-resveratrol, catechin and naringenin.  相似文献   

11.
Summary Trans-feruloyl and trans-p-coumaroyl esterases were found in the culture filtrates of two monocentric (Piromyces MC-1, Neocallimastix MC-2) and three polycentric (Orpinomyces PC-2, Orpinomyces PC-3, and PC-1, an unnamed genus with uniflagellated zoospores) isolates of anaerobic rumen fungi. Treatment of cell walls of Coastal bermudagrass shoots with the filtrates released the trans isomers of ferulic and p-coumaric acids; results of microscopic observations indicated that fungal isolates degraded primarily unlignified cell walls in leaf blades and stems. A greater proportion of ferulic than p-coumaric acid was released by this treatment when compared with the amounts of the acids released by saponification of the walls with 1 M NaOH. The filtrates also showed esterase activities against the trans isomers of methyl ferulate and methyl p-coumarate, with ferulic acid being released at a faster rate than p-coumaric acid. Assays for other cell-wall-degrading enzymes (xylanase, -xylosidase, -l-arabinosidase, cellulase, -glucosidase) indicated that only -xylosidase correlated with ferulate and p-coumarate esterase activities. The monocentric isolate MC-2 had the highest esterase activity against both the plant cell wall and methyl ester substrates and the highest specific activities of acetyl esterase, -xylosidase, -l-arabinosidase, cellulase and -glucosidase. Isolate MC-2 produced substantially greater amounts of feruloyl and p-coumaroyl esterase when the growth substrate contained higher levels of saponifiable ferulic and p-coumaric acids. Offprint requests to: W. S. Borneman  相似文献   

12.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

13.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

14.
Monocotyledons of 104 species in 52 families were divided into two groups depending on the UV fluorescence behaviour of their cell walls. The unlignified cell walls of the first group, fluoresced blue, which changed to green with increased intensity after treatment with NH3 due to the presence of bound ferulic acid. The isolated cell walls of members of the first group were shown to contain bound ferulic, p-coumaric and diferulic acids. These acids were absent from cell walls of the second group. The first group contained families of the Commelinidae of Cronquist, the Palmae (part of the Arecidae), and the Philydraceae, Pontederiaceae, and Haemodoraceae (all part of Liliidae). The other families of the latter two subclasses and those of the Alismatidae belonged to the second group.  相似文献   

15.
Fungal laccase oxidized derivatives of hydroxycinnamic acid. The rates decreased in the order sinapic acid > ferulic acid ≥p-coumaric acid. The laccase oxidized sinapyl alcohol faster than coniferyl alcohol. The rates of oxidation of the hydroxycinnamic acid derivatives by an isoenzyme of peroxidase from horseradish decreased in the order p-coumaric acid > ferulic acid ≥ sinapic acid. The peroxidase oxidized coniferyl alcohol much faster than sinapyl alcohol. The laccase and the peroxidase predominantly oxidized (a) ferulic acid in a reaction mixture that contained p-coumaric acid and ferulic acid, (b) sinapic acid in a mixture of p-coumaric acid plus sinapic acid, and (c) sinapic acid in a mixture of ferulic acid plus sinapic acid. In a reaction mixture that contained both coniferyl and sinapyl alcohols, both fungal laccase and horseradish peroxidase predominantly oxidized sinapyl alcohol. From these results, it is concluded (1) that the p-hydroxyphenyl radical can oxidize guaiacyl and syringyl groups and produce their radicals and (2) that the guaiacyl radical can oxidize the syringyl group under formation of its radical; and that (3) in both cases the reverse reactions are very slow.  相似文献   

16.
Hydroxycinnamates such as ferulic acid, sinapic acid and p-coumaric acid ester-linked to plant cell wall polymers may act as cross-links between polysaccharides to each other, but also to proteins and lignin. Although sinapates and p-coumarates also form cell wall cross-links by the formation of radically or photochemically formed dimers, ferulate derivatives are the quantitatively most important cross-links in the plant cell wall. While the first radically generated ferulate dimer was already identified almost 40 years ago, the spectrum of known ferulate dimers was considerably broadened within the last 15 years. Higher ferulate oligomers were generated in model systems, but also isolated from plant materials. Different model systems using either free hydroxycinnamic acids or their esters are reviewed, highlighting a discussion of the relevance of these models for the plant cell wall. The first ferulate trimer from plant material was discovered in 2003 and seven dehydrotrimers of ferulic acid were isolated from maize bran since. Some of these trimers were also identified in other plant materials such as wheat and rye grains, corn stover, sugar beet and asparagus. Formation mechanisms of ferulate trimers and implications for the plant cell wall are discussed. Ferulate tetramers are the highest oligomers isolated from plant materials so far. These compounds can theoretically cross-link up to four polysaccharide chains, assuming all cross-links are formed intermolecularly. Formation of intramolecular versus intermolecular polysaccharide cross-links is a key question to be answered in the future if we want to judge properly the importance of hydroxycinnamate cross-links in the plant cell wall.  相似文献   

17.
Pseudomonas fluorescens BF13 is especially capable of promoting the formation of vanillic acid during ferulic acid degradation. We studied the possibility of enhancing the formation of this intermediary metabolite by using suspensions of cells at high density. The bioconversion of ferulic into vanillic acid was affected by several parameters, such as the concentration of the biomass, the amount of ferulic acid that was treated, the carbon source on which the biomass was grown. The optimal yield of vanillic acid was obtained with 6 mg/ml cells pre-grown on p-coumaric acid and 2 mg/ml ferulic acid. Under these conditions the bioconversion rate was 95% in 5 h. Therefore BF13 strain represents a valid biocatalyst for the preparative synthesis of vanillic acid. Received: 1 July 1997 / Received revision: 28 October 1997 / Accepted: 16 November 1997  相似文献   

18.
Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.  相似文献   

19.
Arabinoxylans may account for up to 25% of the mass of grass cell walls. The interactions of these polysaccharides with themselves and with cellulose and lignin is believed to affect the walls physical properties and increase the walls resistance to biochemical conversion to fermentable sugars. Arabinoxylans have a backbone composed of 1,4-linked β-d-xylosyl residues, some of which are substituted at O-2 or O-3 with single arabinofuranosyl (Araf) residues. The Araf residues are likely transferred from UDP-Araf to the xylan backbone by arabinofuranosyltransferases. UDP-Araf is itself formed from UDP-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). In this study, RNA interference (RNAi) was used to suppress UAM expression in rice plants and thereby reduce the amounts of UDP-Araf available for cell wall synthesis. Several of the transgenic plants had reduced proportions of Araf in their walls together with a decrease in the extent of substitution of the xylan backbone, and a reduction of between 25% and 80% in ferulic acid and p-coumaric acid contents of the cell walls. Those transgenic plants with >25% reduction in the amounts of Araf were dwarfed and infertile.  相似文献   

20.
The objective of this research was to investigate how ferulic and p-coumaric acids affect lipid and fatty acid composition during canola (Brassica napus L.) seed germination. Data showed that both compounds increased total lipid and fatty acid contents in the cotyledons during germination. The largest accumulation in lipids occurred at 1.0 mM p-coumaric acid with an increase in all unsaturated fatty acids. The results suggest that allelochemicals interfere in canola seed germination by reducing lipid mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号