首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartic proteinases are produced in the human body by a variety of cells. Some of these proteins, examples of which are pepsin, gastricsin, and renin, are secreted and exert their effects in the extracellular spaces. Cathepsin D and cathepsin E on the other hand are intracellular enzymes. The least characterized of the human aspartic proteinases is cathepsin E. Presented here are results of studies designed to characterize the binding specificities in the active site of human cathepsin E with comparison to othermechanistically similar enzymes. A peptide series based on Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu was generatedto elucidate the specificity in the individual binding pockets with systematic substitutions in the P5? P2 and P2′-P3′ based on charge, hydrophobicity, and hydrogen bonding. Also, to explore the S2 binding preferences, asecond series of peptides based on Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu was generated with systematic replacements in the P2 position. Kinetic parameters were determined forboth sets of peptides. The results were correlated to a rule-based structural model of human cathepsin E, constructed on the known three-dimensional structures of several highly homologous aspartic proteinases; porcine pepsin, bovine chymosin, yeast proteinase A, human cathepsin D, andmouse and human renin. Important specificity-determining interactions were found in the S3 (Glu13) and S2 (Thr-222, Gln-287, Leu-289, Ile-300)subsites. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The substrate specificity of porcine pepsin has been altered by site-directed mutagenesis in an attempt to selectively cleave bovine hide collagen at only a few sites, similar to cathepsin D, for the production of high quality gelatin. Kinetic parameters were determined using chromogenic peptide substrates based on the sequence Lys-Pro-Xaa-Yaa-Phe*Nph-Arg-Leu (where Xaa is Ile or Pro, Yaa is Glu. Leu, Gln or Lys, Nph is p-nitrophenylalanine, and * is the site of cleavage). Substitution of Thr222 and Glu287 within the S2 subsite of pepsin by Val and Met, respectively, produced a double mutant with a two- to fourfold higher kcat/Km, compared with wild-type pepsin, for the chromogenic peptides with residues Leu, Gln, and Glu at position P2 (Yaa). The results suggest that the functional group of the P2 side chain may be exposed to solvent, while the aliphatic portion interacts with hydrophobic residues comprising S2. Wild-type pepsin cleaved a peptide corresponding to the carboxy-terminal telopeptide region of bovine type I collagen alpha1 chain, SGGYDLSFLPQPPQE, predominantly at three sites (Asp-Leu, Leu-Ser, and Phe-Leu) and at a significantly lower rate at Ser-Phe. However, Thr222Val/Glu287Met cleaved site Ser-Phe at a rate 20-fold higher than the wild-type. Significantly, enzymes containing the double substitution Phe111Thr/Leu112Phe cleaved this peptide predominantly at one site Leu-Ser (similar to cathepsin D) and at a rate 23-fold higher than the wild-type. These mutants can potentially enhance the rate of solubilization of bovine hide collagen under conditions mild enough to maintain the triple helix structure and hence minimize the rate of subsequent denaturation and proteolytic cleavage.  相似文献   

3.
Blood-feeding parasites, including schistosomes, hookworms, and malaria parasites, employ aspartic proteases to make initial or early cleavages in ingested host hemoglobin. To better understand the substrate affinity of these aspartic proteases, sequences were aligned with and/or three-dimensional, molecular models were constructed of the cathepsin D-like aspartic proteases of schistosomes and hookworms and of plasmepsins of Plasmodium falciparum and Plasmodium vivax, using the structure of human cathepsin D bound to the inhibitor pepstatin as the template. The catalytic subsites S5 through S4' were determined for the modeled parasite proteases. Subsequently, the crystal structure of mouse renin complexed with the nonapeptidyl inhibitor t-butyl-CO-His-Pro-Phe-His-Leu [CHOHCH(2)]Leu-Tyr-Tyr-Ser- NH(2) (CH-66) was used to build homology models of the hemoglobin-degrading peptidases docked with a series of octapeptide substrates. The modeled octapeptides included representative sites in hemoglobin known to be cleaved by both Schistosoma japonicum cathepsin D and human cathepsin D, as well as sites cleaved by one but not the other of these enzymes. The peptidase-octapeptide substrate models revealed that differences in cleavage sites were generally attributable to the influence of a single amino acid change among the P5 to P4' residues that would either enhance or diminish the enzymatic affinity. The difference in cleavage sites appeared to be more profound than might be expected from sequence differences in the enzymes and hemoglobins. The findings support the notion that selective inhibitors of the hemoglobin-degrading peptidases of blood-feeding parasites at large could be developed as novel anti-parasitic agents.  相似文献   

4.
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).  相似文献   

5.
Adult Schistosoma mansoni blood flukes express two discrete cysteine proteinases, SmCL1 and SmCL2, both of which are related to the cathepsin L-like enzymes of the C1 family of peptidases. Our previous phylogenetic analysis indicated that SmCL1 is more closely related to cruzipain from the parasitic protozoa Trypanosoma cruzi than to human cathepsin L, whereas the converse situation applies with SmCL2. To characterize their catalytic subsites and substrate specificities, we have now developed three-dimensional (3D) homology models of SmCL1 and SmCL2 using the structure of cruzipain and cathepsin L. Eisenberg analysis of the 3D models revealed self-compatibility scores of 90.1 and 96.1 out of a possible score of 97.6 for SmCL1 and SmCL2, respectively, verifying the accuracy and utility of the models. Substrate preferences of recombinant SmCL1 and SmCL2 at positions P3, P2, and P1 conformed to the substrate specificity predicted by the models. In particular, SmCL1 and SmCL2 both exhibited high affinity (k(cat)/K(m)) for substrates with hydrophobic residues at P2 including Z-Leu-Arg-NHMec (773.4 and 548.5 mM(-1) s(-1), respectively), Boc-Val-Leu-Lys-NHMec (116.8 and 306.5 mM(-1) s(-1)), and Z-Phe-Arg-NHMec (38.9 and 113.4 mM(-1) s(-1)). SmCL1 exhibited only a low affinity for the cathepsin B diagnostic substrate Z-Arg-Arg-NHMec while SmCL2 failed to cleave this substrate. The substrate specificities of SmCL1 and SmCL2 were clearly differentiated with H-Leu-Val-Tyr-NHMec and Suc-Leu-Tyr-NHMec since SmCL1 cleaved both efficiently (k(cat)/K(m) values of 51.9 and 41.1 mM(-1) s(-1), respectively), whereas SmCL2 cleaved neither. The 3D models revealed that this difference in specificity was due to restrictions imposed on the S3 subsite of SmCL2 as a result of insertion of two amino acids vicinal to residue 60.  相似文献   

6.
Tripeptidyl peptidase I (TTP-I), also known as CLN2, a member of the family of serine-carboxyl proteinases (S53), plays a crucial role in lysosomal protein degradation and a deficiency in this enzyme leads to fatal neurodegenerative disease. Recombinant human TPP-I and its mutants were analyzed in order to clarify the biochemical role of TPP-I and its mechanism of activity. Ser280, Glu77, and Asp81 were identified as the catalytic residues based on mutational analyses, inhibition studies, and sequence similarities with other family members. TPP-I hydrolyzed most effectively the peptide Ala-Arg-Phe*Nph-Arg-Leu (*, cleavage site) (k(cat)/K(m) = 2.94 microM(-1).s(-1)). The k(cat)/K(m) value for this substrate was 40 times higher than that for Ala-Ala-Phe-MCA. Coupled with other data, these results strongly suggest that the substrate-binding cleft of TPP-I is composed of only six subsites (S(3)-S(3)'). TPP-I prefers bulky and hydrophobic amino acid residues at the P(1) position and Ala, Arg, or Asp at the P(2) position. Hydrophilic interactions at the S(2) subsite are necessary for TPP-I, and this feature is unique among serine-carboxyl proteinases. TPP-I might have evolved from an ancestral gene in order to cleave, in cooperation with cathepsins, useless proteins in the lysosomal compartment.  相似文献   

7.
The interactions of five human enzymes (renin, pepsin, gastricsin, cathepsin D and cathepsin E) and the aspartic proteinase from Endothia parasitica with several series of synthetic inhibitors were examined. All of the inhibitors contained the dipeptide analogue statine or its phenylalanine or cyclohexylalanine homologues in the P1-P1' positions. The residues occupying the peripheral sub-sites (P4 to P3') were varied systematically and inhibitory constants were determined for the interactions with each of the proteinases. Inhibitors were elucidated that specifically inhibited human renin and did not affect any of the other human enzymes or the fungal proteinase. With suitable selection of residues to occupy individual sub-sites, effective inhibitors of specific human aspartic proteinases may now be designed.  相似文献   

8.
Cathepsin G has both trypsin- and chymotrypsin-like activity, but studies on its enzymatic properties have been limited by a lack of sensitive synthetic substrates. Cathepsin G activity is physiologically controlled by the fast acting serpin inhibitors alpha1-antichymotrypsin and alpha1-proteinase inhibitor, in which the reactive site loops are cleaved during interaction with their target enzymes. We therefore synthesized a series of intramolecularly quenched fluorogenic peptides based on the sequence of various serpin loops. Those peptides were assayed as substrates for cathepsin G and other chymotrypsin-like enzymes including chymotrypsin and chymase. Peptide substrates derived from the alpha1-antichymotrypsin loop were the most sensitive for cathepsin G with kcat/Km values of 5-20 mM-1 s-1. Substitutions were introduced at positions P1 and P2 in alpha1-antichymotrypsin-derived substrates to tentatively improve their sensitivity. Replacement of Leu-Leu in ortho-aminobenzoyl (Abz)-Thr-Leu-Leu-Ser-Ala-Leu-Gln-N-(2, 4-dinitrophenyl)ethylenediamine (EDDnp) by Pro-Phe in Abz-Thr-Pro-Phe-Ser-Ala-Leu-Gln-EDDnp produced the most sensitive substrate of cathepsin G ever reported. It was cleaved with a specificity constant kcat/Km of 150 mM-1 s-1. Analysis by molecular modeling of a peptide substrate bound into the cathepsin G active site revealed that, in addition to the protease S1 subsite, subsites S1' and S2' significantly contribute to the definition of the substrate specificity of cathepsin G.  相似文献   

9.
In order to contribute to our understanding of cathepsin D (CatD) active site specificity, two series of chromogenic octapeptides with systematic substitutions in positions P2' and P3' were synthesized. This panel was characterized with native human liver cathepsin D (nHuCatD) and yielded information concerning specificity trends within the S2' and S3' subsites. The pepstatin inhibited crystal structure of nHuCatD (Baldwin et al., 1993) was then utilized in conjunction with these subsite preference data to identify residues suspected of contributing to "prime" side subsite specificity. These residues were targeted for site-directed mutagenesis using the re-engineered recombinant model, "short" pseudocathepsin D (Beyer & Dunn, 1996). As a result of these analyses it was determined that prime region subsites do contribute to the unique specificity of human CatD. Furthermore, it was ascertained that the poly-proline loop does not have an active role in S3' subsite specificity. Lastly, it appears that Ile128 has a dominant role on S2' subsite specificity whereas Val130 does not.  相似文献   

10.
alpha 2-Macroglobulin (alpha 2M) is an abundant glycoprotein with the intrinsic capacity for capturing diverse proteins for rapid delivery into cells. After internalization by the receptor- mediated endocytosis, alpha 2M-protein complexes were rapidly degraded in the endolysosome system. Although this is an important pathway for clearance of both alpha 2M and biological targets, little is known about the nature of alpha 2M degradation in the endolysosome system. To investigate the possible involvement of intracellular aspartic proteinases in the disruption of structural and functional integrity of alpha 2M in the endolysosome system, we examined the capacity of alpha 2M for interacting with cathepsin E and cathepsin D under acidic conditions and the nature of its degradation. alpha 2M was efficiently associated with cathepsin E under acidic conditions to form noncovalent complexes and rapidly degraded through the generation of three major proteins with apparent molecular masses of 90, 85 and 30 kDa. Parallel with this reaction, alpha 2M resulted in the rapid loss of its antiproteolytic activity. Analysis of the N-terminal amino-acid sequences of these proteins revealed that alpha 2M was selectively cleaved at the Phe811-Leu812 bond in about 100mer downstream of the bait region. In contrast, little change was observed for alpha 2M treated by cathepsin D under the same conditions. Together, the synthetic SPAFLA peptide corresponding to the Ser808-Ala813 sequence of human alpha 2M, which contains the cathepsin E-cleavage site, was selectively cleaved by cathepsin E, but not cathepsin D. These results suggest the possible involvement of cathepsin E in disruption of the structural and functional integrity of alpha 2M in the endolysosome system.  相似文献   

11.
The exchange of residues 67 and 205 of the S2 pocket of human cysteine cathepsins K and L induces a permutation of their substrate specificity toward fluorogenic peptide substrates. While the cathepsin L-like cathepsin K (Tyr67Leu/Leu205Ala) mutant has a marked preference for Phe, the Leu67Tyr/Ala205Leu cathepsin L variant shows an effective cathepsin K-like preference for Leu and Pro. A similar turnaround of inhibition was observed by using specific inhibitors of cathepsin K [1-(N-Benzyloxycarbonyl-leucyl)-5-(N-Boc-phenylalanyl-leucyl)carbohydrazide] and cathepsin L [N-(4-biphenylacetyl)-S-methylcysteine-(D)-Arg-Phe-beta-phenethylamide]. Molecular modeling studies indicated that mutations alter the character of both S2 and S3 subsites, while docking calculations were consistent with kinetics data. The cathepsin K-like cathepsin L was unable to mimic the collagen-degrading activity of cathepsin K against collagens I and II, DQ-collagens I and IV, and elastin-Congo Red. In summary, double mutations of the S2 pocket of cathepsins K (Y67L/L205A) and L (L67Y/A205L) induce a switch of their enzymatic specificity toward small selective inhibitors and peptidyl substrates, confirming the key role of residues 67 and 205. However, mutations in the S2 subsite pocket of cathepsin L alone without engineering of binding sites to chondroitin sulfate are not sufficient to generate a cathepsin K-like collagenase, emphasizing the pivotal role of the complex formation between glycosaminoglycans and cathepsin K for its unique collagenolytic activity.  相似文献   

12.
Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They were found to be the protein products of the rKlk2 (tonin) and the rKlk9 genes by amino acid sequence analysis (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the discussion panel from the participants of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These two proteinases of similar structure also had very similar physicochemical properties. They differed from other kallikrein-related proteinases in having high pHi values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a two-chain protein after reduction. Their enzymatic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the five other kallikrein-related proteinases we have purified so far, kallikrein rK9 was not inhibited by aprotinin. rK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9 where it was the major kallikrein-like component. The amino acids preferentially accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsin-like properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biologically active peptides. Subsites accommodating residues COOH-terminal to the scissile bond were also important in determining the overall substrate specificity of these proteinases. rK2 and rK9 both showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite were found to intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their P1 specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
1. Five synthetic peptides which together spanned the propart segment of human prorenin were tested for their ability to interact with human renin, pepsin, gastricsin, cathepsin D, cathepsin E, calf chymosin and the aspartic proteinase from Endothia parasitica. 2. While two peptides showed no significant effect with any of the enzymes, a further two were cleaved by several enzymes. 3. Only one (corresponding to the 32P-43P residues in the propart sequence) acted as a weak competitive inhibitor of most of the enzymes.  相似文献   

14.
M Fusek  M Mares  J Vágner  Z Voburka  M Baudys 《FEBS letters》1991,287(1-2):160-162
Two propart peptides of aspartic proteinases, the propart peptide of chicken pepsin and human cathepsin D, respectively, were investigated from the point of view of their inhibitory activity for a set of aspartic proteinases. These peptides display a very broad inhibitory spectrum. The strongest inhibition was observed for pepsin A-like proteinases where propart peptides can be used as titrants of active enzymes.  相似文献   

15.
Cathepsin E and cathepsin D are two major intracellular aspartic proteinases implicated in the physiological and pathological degradation of intra- and extracellular proteins. In this study, we designed and constructed highly sensitive synthetic decapeptide substrates for assays of cathepsins E and D based on the known sequence specificities of their cleavage sites. These substrates contain a highly fluorescent (7-methoxycoumarin-4-yl)acetyl (MOCAc) moiety and a quenching 2,4-dinitrophenyl (Dnp) group. When the Phe-Phe bond is cleaved, the fluorescence at an excitation wavelength of 328 nm and emission wavelength of 393 increases due to diminished quenching resulting from the separation of the fluorescent and quenching moieties. The first substrate, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Le u-Lys(Dnp)gamma-NH2, in which the Lys-Pro combination at positions P5 and P4 was designed for specific interaction with cathepsin E, is hydrolyzed equally well by cathepsins E and D (kcat/Km = 10.9 microM(-1) x s(-1) for cathepsin E and 15.6 microM(-1) x s(-1) for cathepsin D). A very acidic pH optimum o was obtained for both enzymes. The second substrate, MOCAc-Gly-Lys-Pro-Ile-Ile-Phe-Phe-Arg-Le u-Lys(Dnp)gamma-NH2, in which the isoleucine residue at position P2 was meant to increase the specificity for cathepsin E, is also hydrolyzed equally by both enzymes (kcat/Km = 12.2 microM(-1) x s(-1) for cathepsin E and 16.3 microM(-1) x s(-1) for cathepsin D). The kcat/Km values for both substrates are greater than those for the best substrates for cathepsins E and D described so far. Unfortunately, each substrate shows little discrimination between cathepsin E and cathepsin D, suggesting that amino acids at positions far from the cleavage site are important for discrimination between the two enzymes. However, in combination with aspartic proteinase inhibitors, such as pepstatin A and Ascaris pepsin inhibitor, these substrates enable a rapid and sensitive determination of the precise levels of cathepsins E and D in crude cell extracts of various tissues and cells. Thus these substrates represent a potentially valuable tool for routine assays and for mechanistic studies on cathepsins E and D.  相似文献   

16.
Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.  相似文献   

17.
Inhibition of aspartic proteinases by alpha 2-macroglobulin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effect of alpha 2-macroglobulin, one of the major antiproteinases in the plasma of vertebrates, on the action of the aspartic proteinases chymosin, cathepsin D and cathepsin E towards peptide and protein substrates at pH 6.2 was examined. Activities towards protein substrates were blocked, thus demonstrating that alpha 2-macroglobulin can inhibit aspartic proteinases, in addition to serine proteinases, cysteine proteinases and metalloproteinases.  相似文献   

18.
Cathepsin D inactivates cysteine proteinase inhibitors, cystatins   总被引:2,自引:0,他引:2  
The formation of inactive complexes in excess molar amounts of human cathepsins H and L with their protein inhibitors human stefin A, human stefin B and chicken cystatin at pH 5.6 has been shown by measurement of enzyme activity coupled with reverse-phase HPLC not to involve covalent cleavage of the inhibitors. Inhibition must be the direct result of binding. On the contrary the interaction of cystatins with aspartic proteinase cathepsin D at pH 3.5 for 60 min followed by HPLC resulted in their inactivation accompanied by peptide bond cleavage at several sites, preferentially those involving hydrophobic amino acid residues. The released peptides do not inhibit papain and cathepsin L. These results explain reported elevated levels of cysteine proteinases and lead to the proposal that cathepsin D exerts an important function, through inactivation of cystatins, in the increased activities of cysteine proteinases in human diseases including muscular distrophy.  相似文献   

19.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

20.
Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase   总被引:2,自引:0,他引:2  
Abstract A Candida albicans aspartic proteinase (CAP), one of the secretory proteinases of Candida albicans , is thought to be a possible virulence factor in Candida albicans infection. Whereas endothelin-1 is found as an endothelium-derived strong vasoconstrictive peptide, it is known to have a role in the maintenance of vascular homeostasis and tissue survival. Endothelin-1 is generated from a precursor form of endothelin-1, the so-called big endothelin-1. It has recently been reported that cathepsin D, E and pepsin, which are aspartic proteinases, convert big endothelin-1 to endothelin-1. In this study, the relationship between CAP and big endothelin-1 was studied. High performance liquid chromatography analysis revealed that big endothelin-1 was cleaved into several amino acid sites by CAP, but endothelin-1 was not converted from big endothelin-1. CAP cleaved big endothelin-1 at different sites when compared with that of other known aspartic proteinases, and it suppressed endothelin-1 production through the degradation of big endothelin-1. CAP may break homeostatic mechanism of endothelin-1 in Candida albicans infectious lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号