首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

2.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

3.
The metabotropic glutamate 1 (mGlu(1)) receptor in cerebellar Purkinje cells plays a key role in motor learning and motor coordination. Here we show that the G protein-coupled receptor kinases (GRK) 2 and 4, which are expressed in these cells, regulate the mGlu(1) receptor by at least in part different mechanisms. Using kinase-dead mutants in HEK293 cells, we found that GRK4, but not GRK2, needs the intact kinase activity to desensitize the mGlu(1) receptor, whereas GRK2, but not GRK4, can interact with and regulate directly the activated Galpha(q). In cells transfected with GRK4 and exposed to agonist, beta-arrestin was first recruited to plasma membranes, where it was co-localized with the mGlu(1) receptor, and then internalized in vesicles. The receptor was also internalized but in different vesicles. The expression of beta-arrestin V53D dominant negative mutant, which did not affect the mGlu(1) receptor internalization, reduced by 70-80% the stimulation of mitogen-activated protein (MAP) kinase activation by the mGlu(1) receptor. The agonist-stimulated differential sorting of the mGlu(1) receptor and beta-arrestin as well as the activation of MAP kinases by mGlu(1) agonist was confirmed in cultured cerebellar Purkinje cells. A major involvement of GRK4 and of beta-arrestin in agonist-dependent receptor internalization and MAP kinase activation, respectively, was documented in cerebellar Purkinje cells using an antisense treatment to knock down GRK4 and expressing beta-arrestin V53D dominant negative mutant by an adenovirus vector. We conclude that GRK2 and GRK4 regulate the mGlu(1) receptor by different mechanisms and that beta-arrestin is directly involved in glutamate-stimulated MAP kinase activation by acting as a signaling molecule.  相似文献   

4.
The substance P receptor (SPR) is a G protein-coupled receptor (GPCR) that plays a key role in pain regulation. The SPR desensitizes in the continued presence of agonist, presumably via mechanisms that implicate G protein-coupled receptor kinases (GRKs) and beta-arrestins. The temporal relationship of these proposed biochemical events has never been established for any GPCR other than rhodopsin beyond the resolution provided by biochemical assays. We investigate the real-time activation and desensitization of the human SPR in live HEK293 cells using green fluorescent protein conjugates of protein kinase C, GRK2, and beta-arrestin 2. The translocation of protein kinase C betaII-green fluorescent protein to and from the plasma membrane in response to substance P indicates that the human SPR becomes activated within seconds of agonist exposure, and the response desensitizes within 30 s. This desensitization process coincides with a redistribution of GRK2 from the cytosol to the plasma membrane, followed by a robust redistribution of beta-arrestin 2 and a profound change in cell morphology that occurs after 1 min of SPR stimulation. These data establish a role for GRKs and beta-arrestins in homologous desensitization of the SPR and provide the first visual and temporal resolution of the sequence of events underlying homologous desensitization of a GPCR in living cells.  相似文献   

5.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

6.
We previously reported that the beta(1)-adrenergic receptor (beta(1)AR) associates with PSD-95 through a PDZ domain-mediated interaction, by which PSD-95 modulates beta(1)AR function and facilitates the physical association of beta(1)AR with other synaptic proteins such as N-methyl-d-aspartate receptors. Here we demonstrate that beta(1)AR association with PSD-95 is regulated by G protein-coupled receptor kinase 5 (GRK5). When beta(1)AR and PSD-95 were coexpressed with either GRK2 or GRK5 in COS-7 cells, GRK5 alone dramatically decreased the association of beta(1)AR with PSD-95, although GRK2 and GRK5 both could be co-immunoprecipitated with beta(1)AR and both could enhance receptor phosphorylation in vivo. Increasing expression of GRK5 in the cells led to further decreased beta(1)AR association with PSD-95. Stimulation with the beta(1)AR agonist isoproterenol further decreased PSD-95 binding to beta(1)AR. In addition, GRK5 protein kinase activity was required for this regulatory effect since a kinase-inactive GRK5 mutant had no effect on PSD-95 binding to beta(1)AR. Moreover, the regulatory effect of GRK5 on beta(1)AR association with PSD-95 was observed only when GRK5 was expressed together with the receptor, but not when GRK5 was coexpressed with PSD-95. Thus, we propose that GRK5 regulates beta(1)AR association with PSD-95 through phosphorylation of beta(1)AR. Regulation of protein association through receptor phosphorylation may be a general mechanism used by G protein-coupled receptors that associate via PDZ domain-mediated protein/protein interactions.  相似文献   

7.
Opioid receptors mediate multiple biological functions through their interaction with endogenous opioid peptides as well as opioid alkaloids including morphine and etorphine. Previously we have reported that the ability of distinct opioid agonists to differentially regulate mu-opioid receptor (mu OR) responsiveness is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the receptor (1). In the present study, we further examined the role of GRK and beta-arrestin in agonist-specific regulation of the delta-opioid receptor (delta OR). While both etorphine and morphine effectively activate the delta OR, only etorphine triggers robust delta OR phosphorylation followed by plasma membrane translocation of beta-arrestin and receptor internalization. In contrast, morphine is unable to either elicit delta OR phosphorylation or stimulate beta-arrestin translocation, correlating with its inability to cause delta OR internalization. Unlike for the mu OR, overexpression of GRK2 results in neither the enhancement of delta OR sequestration nor the rescue of delta OR-mediated beta-arrestin translocation. Therefore, our findings not only point to the existence of marked differences in the ability of different opioid agonists to promote delta OR phosphorylation by GRK and binding to beta-arrestin, but also demonstrate differences in the regulation of two opioid receptor subtypes. These observations may have important implications for our understanding of the distinct ability of various opioids in inducing opioid tolerance and addiction.  相似文献   

8.
We used the Xenopus oocyte expression system to examine the regulation of rat kappa opioid receptor (rKOR) function by G protein receptor kinases (GRKs). kappa agonists increased the conductance of G protein-activated inwardly rectifying potassium channels in oocytes co-expressing KOR with Kir3.1 and Kir3.4. In the absence of added GRK and beta-arrestin 2, desensitization of the kappa agonist-induced potassium current was modest. Co-expression of either GRK3 or GRK5 along with beta-arrestin 2 significantly increased the rate of desensitization, whereas addition of either beta-arrestin 2, GRK3, or GRK5 alone had no effect on the KOR desensitization rate. The desensitization was homologous as co-expressed delta opioid receptor-evoked responses were not affected by KOR desensitization. The rate of GRK3/beta-arrestin 2-dependent desensitization was reduced by truncation of the C-terminal 26 amino acids, KOR(Q355Delta). In contrast, substitution of Ala for Ser within the third intracellular loop [KOR(S255A,S260A, S262A)] did not reduce the desensitization rate. Within the C-terminal region, KOR(S369A) substitution significantly attenuated desensitization, whereas the KOR(T363A) and KOR(S356A,T357A) point mutations did not. These results suggest that co-expression of GRK3 or GRK5 and beta-arrestin 2 produced homologous, agonist-induced desensitization of the kappa opioid receptor by a mechanism requiring the phosphorylation of the serine 369 of rKOR.  相似文献   

9.
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.  相似文献   

10.
G protein-coupled receptor kinases are well characterized for their ability to phosphorylate and desensitize G protein-coupled receptors (GPCRs). In addition to phosphorylating the beta2-adrenergic receptor (beta2AR) and other receptors, G protein-coupled receptor kinase 2 (GRK2) can also phosphorylate tubulin, a nonreceptor substrate. To identify novel nonreceptor substrates of GRK2, we used two-dimensional gel electrophoresis to find cellular proteins that were phosphorylated upon agonist-stimulation of the beta2AR in a GRK2-dependent manner. The ribosomal protein P2 was identified as an endogenous HEK-293 cell protein whose phosphorylation was increased following agonist stimulation of the beta2AR under conditions where tyrosine kinases, PKC and PKA, were inhibited. P2 along with its other family members, P0 and P1, constitutes a part of the elongation factor-binding site connected to the GTPase center in the 60S ribosomal subunit. Phosphorylation of P2 is known to regulate protein synthesis in vitro. Further, P2 and P1 are shown to be good in vitro substrates for GRK2 with K(M) values approximating 1 microM. The phosphorylation sites in GRK2-phosphorylated P2 are identified (S102 and S105) and are identical to the sites known to regulate P2 activity. When the 60S subunit deprived of endogenous P1 and P2 is reconstituted with GRK2-phosphorylated P2 and unphosphorylated P1, translational activity is greatly enhanced. These findings suggest a previously unrecognized relationship between GPCR activation and the translational control of gene expression mediated by GRK2 activation and P2 phosphorylation and represent a potential novel signaling pathway responsible for P2 phosphorylation in mammals.  相似文献   

11.
The nonreceptor tyrosine kinase Src has been implicated in the switching of signaling of beta2-adrenergic receptors from adenylylcyclase coupling to the mitogen-activated protein kinase pathway. In the current work, we demonstrate that Src plays an active role in the agonist-induced desensitization of beta2-adrenergic receptors. Both the expression of dominant-negative Src and treatment with the 4-amine-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) inhibitor of Src kinase activity blocks agonist-induced desensitization. Agonist triggers tyrosine phosphorylation of the beta2-adrenergic receptor and recruitment and activation of Src. Because phosphorylation of the Tyr-350 residue of the beta2-adrenergic receptor creates a conditional, canonical SH2-binding site on the receptor, we examined the effect of the Y350F mutation on Src phosphorylation, Src recruitment, and desensitization. Mutant beta2-adrenergic receptors with a Tyr-to-Phe substitution at Tyr-350 do not display agonist-induced desensitization, Src recruitment, or Src activation. Downstream of binding to the receptor, Src phosphorylates and activates G-protein-linked receptor kinase 2 (GRK2), a response obligate for agonist-induced desensitization. Constitutively active Src increases GRK phosphorylation, whereas either expression of dominant-negative Src or treatment with the PP2 inhibitor abolishes tyrosine phosphorylation of GRK and desensitization. Thus, in addition to its role in signal switching to the mitogen-activated protein kinase pathway, Src recruitment to the beta2-adrenergic receptor and activation are obligate for normal agonist-induced desensitization.  相似文献   

12.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

13.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

14.
Nucleus raphe magnus (NRM) sends the projection to spinal dorsal horn and inhibits nociceptive transmission. Analgesic effect produced by mu-opioid receptor agonists including morphine partially results from activating the NRM-spinal cord pathway. It is generally believed that mu-opioid receptor agonists disinhibit spinally projecting neurons of the NRM and produce analgesia by hyperpolarizing GABAergic interneurons. In the present study, whole-cell patch-clamp recordings combined with single-cell RT-PCR analysis were used to test the hypothesis that DAMGO ([D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin), a specific mu-opioid receptor agonist, selectively hyperpolarizes NRM neurons expressing mRNA of glutamate decarboxylase (GAD(67)). Homologous desensitization of mu-opioid receptors in NRM neurons could result in the development of morphine-induced tolerance. G protein-coupled receptor kinase (GRK) is believed to mediate mu-opioid receptor desensitization in vivo. Therefore, we also investigated the involvement of GRK in mediating homologous desensitization of DAMAMGO-induced electrophysiological effects on NRM neurons by using two experimental strategies. First, single-cell RT-PCR assay was used to study the expression of GRK2 and GRK3 mRNAs in individual DAMGO-responsive NRM neurons. Whole-cell recording was also performed with an internal solution containing the synthetic peptide, which corresponds to G(betagamma)-binding domain of GRK and inhibits G(betagamma) activation of GRK. Our results suggest that DAMGO selectively hyperpolarizes NRM GABAergic neurons by opening inwardly rectifying K(+) channels and that GRK2 mediates short-term homologous desensitization of mu-opioid receptors in NRM GABAergic neurons.  相似文献   

15.
G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.  相似文献   

16.
The small family of G-protein-coupled receptor kinases (GRKs) regulate cell signaling by phosphorylating heptahelical receptors, thereby promoting receptor interaction with beta-arrestins. This switches a receptor from G-protein activation to G-protein desensitization, receptor internalization, and beta-arrestin-dependent signal activation. However, the specificity of GRKs for recruiting beta-arrestins to specific receptors has not been elucidated. Here we use the beta(2)-adrenergic receptor (beta(2)AR), the archetypal nonvisual heptahelical receptor, as a model to test functional GRK specificity. We monitor endogenous GRK activity with a fluorescence resonance energy transfer assay in live cells by measuring kinetics of the interaction between the beta(2)AR and beta-arrestins. We show that beta(2)AR phosphorylation is required for high affinity beta-arrestin binding, and we use small interfering RNA silencing to show that HEK-293 and U2-OS cells use different subsets of their expressed GRKs to promote beta-arrestin recruitment, with significant GRK redundancy evident in both cell types. Surprisingly, the GRK specificity for beta-arrestin recruitment does not correlate with that for bulk receptor phosphorylation, indicating that beta-arrestin recruitment is specific for a subset of receptor phosphorylations on specific sites. Moreover, multiple members of the GRK family are able to phosphorylate the beta(2)AR and induce beta-arrestin recruitment, with their relative contributions largely determined by their relative expression levels. Because GRK isoforms vary in their regulation, this partially redundant system ensures beta-arrestin recruitment while providing the opportunity for tissue-specific regulation of the rate of beta-arrestin recruitment.  相似文献   

17.
G protein-coupled receptors form the largest family of membrane receptors and transmit diverse ligand signals to modulate various cellular responses. After activation by their ligands, some of these G protein-coupled receptors are desensitized, internalized (endocytosed), and down-regulated (degraded). In HEK 293 cells, the G(s)-coupled beta2-adrenergic receptor was postulated to initiate a second wave of signaling, such as the activation of the mitogen-activated protein kinase (MAPK) pathway after the receptor is internalized. The tyrosine kinase c-Src plays a critical role in these events. Here we used mouse embryonic fibroblast (MEF) cells deficient in Src family tyrosine kinases to examine the role of Src in beta2-adrenergic receptor signaling to the MAPK pathway and in receptor internalization. We found that in Src-deficient cells the beta2-adrenergic receptor could activate the MAPK pathway. However, the internalization of beta2-adrenergic receptors was blocked in Src-deficient MEF cells. Furthermore, we observed that in MEF cells deficient in beta-arrestin 2 the internalization of the beta2-adrenergic receptor was impaired, whereas the activation of the MAPK pathway by the beta2-adrenergic receptor was normal. Our data demonstrate that although Src and beta-arrestin 2 play essential roles in beta2-adrenergic receptor internalization, they are not required for the activation of the MAPK pathway by the beta2-adrenergic receptor. In other words, our finding suggests that receptor internalization is not required for beta2-adrenergic receptor signaling to the MAPK pathway in MEF cells.  相似文献   

18.
The metabotropic glutamate receptor 5 (mGluR5) is one of the important excitatory neurotransmitter receptors in the central nervous system, and its desensitization by G protein-coupled receptor kinases (GRKs) plays an important role in neuron protection against receptor overstimulation. It is reported that GRK2 could down-regulate the mGluR5 signaling in both HEK 293 cells and neurons. However, whether GRK2-mediated mGluR5 desensitization is phosphorylation dependent remains controversial. Here, we demonstrated that the signal intensity and kinetics of mGluR5 desensitization was inhibited or changed by GRK2 in HEK 293 cells. By using the catalytically inactive GRK2 mutant K220R, and the receptor mutants that lack potential phosphorylation sites in the C-terminal tail, we demonstrated that the GRK2-mediated mGluR5 desensitization was phosphorylation-independent. Furthermore, overexpression of an N-terminal regulator of G protein signaling (RGS) homology (RH) domain of GRK2 was sufficient to attenuate the mGluR5 signaling, whereas the expression of GRK2 D110A mutant devoid in Gαq binding was unable to inhibit mGluR5 signaling. In summary, this study provides evidence that GRK2 mediates phosphorylationindependent mGluR5 desensitization via the interaction between the RGS domain and Gαq in HEK 293 cells.  相似文献   

19.
Homologous desensitization of beta-adrenergic receptors, as well as adaptation of rhodopsin, are thought to be triggered by specific phosphorylation of the receptor proteins. However, phosphorylation alone seems insufficient to inhibit receptor function, and it has been proposed that the inhibition is mediated, following receptor phosphorylation, by the additional proteins beta-arrestin in the case of beta-adrenergic receptors and arrestin in the case of rhodopsin. In order to test this hypothesis with isolated proteins, beta-arrestin and arrestin were produced by transient overexpression of their cDNAs in COS7 cells and purified to apparent homogeneity. Their functional effects were assessed in reconstituted receptor/G protein systems using either beta 2-adrenergic receptors with Gs or rhodopsin with Gt. Prior to the assays, beta 2-receptors and rhodopsin were phosphorylated by their specific kinases beta-adrenergic receptor kinase (beta ARK) and rhodopsin kinase, respectively. beta-Arrestin was a potent inhibitor of the function of beta ARK-phosphorylated beta 2-receptors. Half-maximal inhibition occurred at a beta-arrestin:beta 2-receptor stoichiometry of about 1:1. More than 100-fold higher concentrations of arrestin were required to inhibit beta 2-receptor function. Conversely, arrestin caused half-maximal inhibition of the function of rhodopsin kinase-phosphorylated rhodopsin when present in concentrations about equal to those of rhodopsin, whereas beta-arrestin at 100-fold higher concentrations had little inhibitory effect. The potency of beta-arrestin in inhibiting beta 2-receptor function was increased over 10-fold following phosphorylation of the receptors by beta ARK, but was not affected by receptor phosphorylation using protein kinase A. This suggests that beta-arrestin plays a role in beta ARK-mediated homologous, but not in protein kinase A-mediated heterologous desensitization of beta-adrenergic receptors. It is concluded that even though arrestin and beta-arrestin are similar proteins, they display marked specificity for their respective receptors and that phosphorylation of the receptors by the receptor-specific kinases serves to permit the inhibitory effects of the "arresting" proteins by allowing them to bind to the receptors and thereby inhibit their signaling properties. Furthermore, it is shown that this mechanism of receptor inhibition can be reproduced with isolated purified proteins.  相似文献   

20.
In response to extracellular signals, G protein-coupled receptors (GPCRs) catalyze guanine nucleotide exchange on Galpha subunits, enabling both activated Galpha and Gbetagamma subunits to target downstream effector enzymes. One target of Gbetagamma is G protein-coupled receptor kinase 2 (GRK2), an enzyme that initiates homologous desensitization by phosphorylating activated GPCRs. GRK2 consists of three distinct domains: an RGS homology (RH) domain, a protein kinase domain, and a pleckstrin homology (PH) domain, through which it binds Gbetagamma. The crystal structure of the GRK2-Gbetagamma complex revealed that the domains of GRK2 are intimately associated and left open the possibility for allosteric regulation by Gbetagamma. In this paper, we report the 4.5 A structure of GRK2, which shows that the binding of Gbetagamma does not induce large domain rearrangements in GRK2, although small rotations of the RH and PH domains relative to the kinase domain are evident. Mutation of residues within the larger domain interfaces of GRK2 generally leads to diminished expression and activity, suggesting that these interfaces are important for stability and remain intact upon activation of GRK2. Geranylgeranylated Gbetagamma, but not a soluble mutant of Gbetagamma, protects GRK2 from clostripain digestion at a site within its kinase domain that is 80 A away from the Gbetagamma binding site. Equilibrium ultracentrifugation experiments indicate that neither abnormally large detergent micelles nor protein oligomerization can account for the observed protection. The Gbetagamma-mediated binding of GRK2 to CHAPS micelles or lipid bilayers therefore appears to rigidify the kinase domain, perhaps by encouraging stable contacts between the RH and kinase domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号