首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
田宏刚  张文庆 《昆虫知识》2012,49(2):309-316
在昆虫中,RNAi是一种对抗外源病毒的天然免疫方式,基于生物体中的这种内在机制而建立的RNAi技术已经被广泛用来研究多种昆虫基因的功能。近年的研究结果表明RNAi技术在抵御害虫和防治益虫疾病方面具有潜在的应用价值,有可能对农业有害生物的控制起到巨大的推动作用。本文综述了RNAi与昆虫免疫、及其在昆虫基因功能研究、害虫控制、益虫疾病控制和昆虫系统生物学方面的最新研究进展,并展望了RNAi在昆虫学研究中的发展趋势。  相似文献   

2.
RAPD技术在昆虫学研究中的进展   总被引:14,自引:3,他引:11  
综合论述了RAPD技术在昆虫分类学、物种的亲缘关系、系统发育、分子连锁图谱的构建、有害生物鉴定、害虫抗药性诊断、分子标记辅助育种和生态学这几方面研究中的应用,指出RAPD技术存在的问题,并提出一定的相关对策,阐明随着理论的发展和试验技术的进步,分子标记技术将使昆虫分子生物学研究迈上一个新台阶.  相似文献   

3.
Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.  相似文献   

4.
Abstract   Australia is isolated from the rest of the world geographically but not scientifically: Australian entomology has a long and distinguished record of collaboration with a diversity of other countries. Much of the focus relates to keeping new pests out of Australia (biosecurity and quarantine) and managing those that do get in (biological control and insect pest management). Many projects have cooperated with neighbouring countries, to assist them to control pests and thereby reduce threats to Australia. Biological control projects have also had two-way benefits, and examples are given of various collaborations in these fields.  相似文献   

5.
昆虫的RNA干扰   总被引:2,自引:0,他引:2  
杨广  尤民生  赵伊英  刘春辉 《昆虫学报》2009,52(10):1156-1162
RNA干扰(RNAi)是一种强有力的分子生物学技术, 在昆虫研究中得到了较多的应用。目前, RNAi技术主要应用于昆虫功能基因和功能基因组研究, 已在多个目的19种昆虫上实现了RNAi。在昆虫上实现RNAi的方法主要有注射、浸泡、喂食、转基因和病毒介导等方法, 这些方法各有特点, 其中喂食法因其简单而最有应用前景。昆虫RNAi的系统性较为复杂, 只有部分昆虫具有RNAi的系统性。昆虫中RNAi信号传导的基因可能是sid-1, 但昆虫RNAi的系统性机理还不是很清楚。转基因植物产生的dsRNA实现了对作物的保护, 证实了RNAi技术可用于害虫控制, 为害虫控制开辟了新领域。昆虫的RNAi研究处在起步阶段, 研究昆虫RNAi的机理, 特别是RNAi在昆虫体内的系统性扩散机理, 改进实现RNAi的方法, 提高RNAi技术在昆虫研究中的应用, 有利于昆虫基因功能鉴定和害虫控制, 促进昆虫学科的发展。  相似文献   

6.
试论拓宽生物防治范围,发展虫害可持续治理   总被引:1,自引:0,他引:1  
严毓骅 《昆虫学报》1998,41(-1):1-4
该文针对我国生物防治资源极其丰富和农民经济实力薄弱的特点,结合我国微孢子虫治蝗和苹果园植被多样化持续治理虫害的成果,论述了应如何发展和拓宽具有我国特色的害虫生物防治,进一步提高综合防治水平,促进农业可持续发展。  相似文献   

7.
Insect transgenesis and its potential role in agriculture and human health   总被引:2,自引:0,他引:2  
The ability to genetically engineer insects other than Drosophila melanogaster has further extended modern genetic techniques into important insect pest species ranging from fruit fly pests of horticulture to mosquito vectors of human disease. In only a relatively short period of time, a range of transgenes have been inserted into more than 10 insect pest species. Genetic transformation of these pest species has proven to be a very important laboratory tool in analyzing gene function and effects on phenotype however the full extension of this technology into the field is yet to be realized. Here we briefly review the development of transgenic technology in pest insect species and discuss the challenges that remain in this applied area of insect genetics and entomology.  相似文献   

8.
21世纪我国害虫生物防治研究的进展、问题与展望   总被引:7,自引:0,他引:7  
陈学新 《昆虫知识》2010,47(4):615-625
害虫生物防治是昆虫学的重要分支学科,进入21世纪以来,随着生命科学和生物技术的发展以及新原理、新方法的不断渗透、交叉与融合,使该分支学科在我国得到了快速发展。本文就近年来我国在天敌昆虫及其利用、昆虫病原微生物及其利用、昆虫信息素及其应用、生物农药及其推广应用、新兴生物技术在害虫生物防治中的应用等方面所取得的主要进展作了简要的回顾与总结;并在分析我国本领域学科发展水平与国际差距的基础上,指出了我国生物防治领域存在的主要问题及几个亟待加强的优先发展领域。  相似文献   

9.
作为防治或根除重大害虫最为有效的手段之一,害虫遗传防治在世界范围内被广泛采用并取得了巨大成功。本文综述了不育昆虫技术、雌性致死系统和昆虫显性致死技术等经典害虫遗传防治策略的发展历史、技术特点和应用情况。近年来,许多新的分子生物手段被不断提出并整合到害虫遗传防治策略中,包括归巢核酸内切酶基因、锌指核酸酶、转录激活因子样效应因子核酸酶、CRISPR/Cas9系统、Medea元件、Killer-Rescue系统、Wolbachia-细胞质不亲和性系统等。基于这些新的工具手段,许多国家已经在不同程度上启动了下一代害虫遗传防治项目。而我国在该领域的研究相对薄弱,需要在借鉴国外成功经验的同时,进一步加强害虫遗传防治的基础和应用研究,从而实现本地有害生物的可持续治理和外来入侵生物的有效狙击,确保我国未来的粮食和生态安全。  相似文献   

10.
Among arthropod diseases affecting animals, larval infections - myiases - of domestic and wild animals have been considered important since ancient times. Besides the significant economic losses to livestock worldwide, myiasis-causing larvae have attracted the attention of scientists because some parasitise humans and are of interest in forensic entomology. In the past two decades, the biology, epidemiology, immunology, immunodiagnosis and control methods of myiasis-causing larvae have been focused on and more recently the number of molecular studies have also begun to increase. The 'new technologies' (i.e. molecular biology) are being used to study taxonomy, phylogenesis, molecular identification, diagnosis (recombinant antigens) and vaccination strategies. In particular, more in depth molecular studies have now been performed on Sarcophagidae, Calliphoridae and flies of the Oestridae sister group. This review discusses the most topical issues and recent studies on myiasis-causing larvae using molecular approaches. In the first part, PCR-based techniques and the genes that have already been analysed, or are potentially useful for the molecular phylogenesis and identification of myiasis-causing larvae, are described. The second section deals with the more recent advances concerning taxonomy, phylogenetics, population studies, molecular identification, diagnosis and vaccination.  相似文献   

11.
The fall‐webworm (FWW), Hyphantria cunea, is a highly polyphagous insect pest that is native to North America and distributed in different countries around the world. To manage this insect pest, various control methods have been independently evaluated in the invaded areas. Some of the control methods have been limited to the laboratory and need further study to verify their effectiveness in the field. On the other hand, currently, integrated pest management (IPM) has become a promising ecofriendly insect pest management option to reduce the adverse effect of insecticides on the environment. The development of an IPM for an insect pest must combine different management options in a compatible and applicable manner. In the native areas of the insect pests, there are some recommended management options. However, to date, there is no IPM for the management of the FWW in the newly invaded areas. Therefore, to develop an IPM for this insect pest, compilation of effective management option information is the first step. Thus, believing in the contribution of an IPM to the established management strategies, the chemical, biological, natural enemy, sex pheromone, and molecular studies regarding this insect were reviewed and potential future research areas were delineated in this review study. Therefore, using the currently existing management options, IPM development for this insect pest should be the subject of future research in the newly invaded areas.  相似文献   

12.
Households are mini‐ecosystems that provide a variety of conditions in which a variety of insect species can develop. Whether these insects are considered pests, largely depends on the perception, attitudes, and knowledge of the human inhabitants of the house. If considered unacceptable, residents can attempt to manage the insects themselves, or hire a professional. A pest management professional can provide a quick‐fix solution, often relying on the sole use of insecticides, or a sustainable solution through integrated pest management (IPM). In this review, it is discussed how the public's perception, attitudes, and knowledge affect the implementation of IPM in the household through the following steps: inspection, identification, establishment of a threshold level, pest control, and evaluation of effectiveness. Furthermore, recent and novel developments within the fields of inspection, identification, and pest control that allow to address pest infestations more effectively are described and their implementation in the household environment is discussed. In general, pest management in the household environment is reactive instead of pro‐active. The general public lacks the knowledge of the pest insects’ biology to identify the species, perform a proper inspection and identify causes of pest presence, as well as the knowledge of the available tools for monitoring and pest control. The percentage of individuals that seek professional aid in identification and pest control is relatively low. Moreover, the perception of and attitudes towards household insects generally result in low threshold levels. Current developments of methods for monitoring, identification, and control of insect pests in the household environment are promising, such as DNA barcoding, matrix‐assisted laser desorption/ionization time‐of‐flight and RNA interference. Efforts should be strengthened to alter the perception and attitude, and increase the knowledge of the non‐professional stakeholders, so that correct pest management decisions can be taken.  相似文献   

13.
王毛  邹振  徐卫华 《昆虫学报》2022,65(12):1565-1570
昆虫发育与免疫作为昆虫学的重要方向,面向国家需求和科学前沿,经过多维度的研究,在解决重大害虫成灾和人类健康等方面取得了重要成就。同时,生物技术的进步极大地推进了昆虫发育与免疫的学科发展,使得我们对昆虫生长发育和免疫防御的认识更加深入和全面。本“昆虫生长发育与免疫”专辑论文较好地反映了我国昆虫发育与免疫的研究现状与研究特色。生长发育方面涵盖了从卵到成虫的所有发育阶段,主要研究信号转导机制;免疫方面则聚焦于生物互作。在大数据背景下,将传统和现代技术并用,加强合作,使本研究方向在害虫防治、昆虫资源利用和粮食安全等方面将发挥更大的作用。  相似文献   

14.
Most people agree that arthropod natural enemies are good for insect pest management in agriculture. However, the population suppressive effects of predators, which consume their prey and often leave no direct evidence of their activity, are more difficult to study than the effects of parasitoids, which can be sampled from host populations relatively easily. We critically reviewed field studies which investigated the relationship between lepidopteran pests and their associated predatory fauna, published in 11 leading entomology and applied ecology journals between 2003 and 2008. Each study was appraised to determine whether or not it demonstrated that predators had an impact on prey (pest) populations and, if so, whether it was conducted at an ecological scale relevant to pest management. Less than half (43%) of the 54 field studies adopted methodologies that allowed the impact of predators on target pest populations to be measured. Furthermore, 76% of the studies were conducted at the scale of experimental plots rather than at the ecological scale which determines pest and predator population dynamics or at which pest‐management decisions are made. In almost one‐third of the studies, predator abundance and/or diversity was measured, but this metric was not linked with pest suppression or mortality. We conclude that much current research does not provide evidence that predatory arthropods suppress target lepidopteran pest populations and, consequently, that it has little relevance to pest management. Well‐designed ecological experiments combined with recent advances in molecular techniques to identify predator diets and the emergence of organic agriculture provide both the mechanisms and a platform upon which many predator–prey interactions can be investigated at a scale relevant to pest management. However, benefits will only be reaped from this opportunity if current approaches to research are changed and relevant ecological data are collected at appropriate ecological scales.  相似文献   

15.
Marine pest incursions can cause significant ongoing damage to aquaculture, biodiversity, fisheries habitat, infrastructure and social amenity. They represent a significant and ongoing economic burden. Marine pests can be introduced by several vectors including aquaculture, aquarium trading, commercial shipping, fishing, floating debris, mining activities and recreational boating. Despite the inherent risks, there is currently relatively little routine surveillance of marine pest species conducted in the majority of countries worldwide. Accurate and rapid identification of marine pest species is central to early detection and management. Traditional techniques (e.g. physical sampling and sorting), have limitations, which has motivated some progress towards the development of molecular diagnostic tools. This review provides a brief account of the techniques traditionally used for detection and describes developments in molecular-based methods for the detection and surveillance of marine pest species. Recent advances provide a platform for the development of practical, specific, sensitive and rapid diagnosis and surveillance tools for marine pests for use in effective prevention and control strategies.  相似文献   

16.
ABSTRACT: Since the advent of the new proteomics era more than a decade ago, large-scale studies of protein profiling have been used to identify distinctive molecular signatures in a wide array of biological systems, spanning areas of basic biological research, clinical diagnostics, and biomarker discovery directed toward therapeutic applications. Recent advances in protein separation and identification techniques have significantly improved proteomic approaches, leading to enhancement of the depth and breadth of proteome coverage. Proteomic signatures, specific for multiple diseases, including cancer and pre-invasive lesions, are emerging. This article combines, in a simple manner, relevant proteomic and OMICS clues used in the discovery and development of diagnostic and prognostic biomarkers that are applicable to all clinical fields, thus helping to improve applications of clinical proteomic strategies for translational medicine research.  相似文献   

17.
Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.  相似文献   

18.
The gall midge, Orseolia oryzae, is a major dipteran pest of rice affecting most rice growing regions in Asia, Southeast Asia and Africa. Chemical and other cultural methods for control of this pest are neither very effective nor environmentally safe. The gall midge problem is further compounded by the fact that there are many biotypes of this insect and new biotypes are continuously evolving. However, resistance to this pest is found in the rice germ plasm. Resistance is generally governed by single dominant genes and a number of non-allelic resistance genes that confer resistance to different biotypes have been identified. Genetic studies have revealed that there is a gene-for-gene interaction between the different biotypes of gall midge and the various resistance genes found in rice. This review discusses different aspects of the process of infestation by the rice gall midge and its interaction with its host. Identification of the gall midge biotypes by conventional methods is a long and tedious process. The review discusses the PCR-based molecular markers that have been developed recently to speed up the identification process. Similarly, molecular markers have been developed for two gall midge resistance genes in rice – Gm2 and Gm4t – and these markers are now being used for marker-assisted selection. The mapping, tagging and map-based gene cloning of one of these genes – Gm2 – has also been discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In the last few years matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been increasingly studied and applied for the identification and typing of microorganisms. Very recently, MALDI-TOF MS has been introduced in clinical routine microbiological diagnostics with marked success, which is remarkable considering that not long ago the technology was generally seen as being far from practical application. The identification of microbial isolates by whole-cell mass spectrometry (WC-MS) is being recognized as one of the latest tools forging a revolution in microbial diagnostics, with the potential of bringing to an end many of the time-consuming and man-power-intensive identification procedures that have been used for decades. Apart from applications of WC-MS in clinical diagnostics, other fields of microbiology also have adopted the technology with success. In this article, an over-view of the principles of MALDI-TOF MS and WC-MS is presented, highlighting the characteristics of the technology that allow its utilization for systematic microbiology.  相似文献   

20.
Biological pest control agents are gaining prominence for the control of insect pests in agriculture and forestry. The shift from chemical control has been due to environmental concerns and recent innovations in biotechnology. Production and use of biological insect control agents is the challenge of the future for pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号