共查询到20条相似文献,搜索用时 0 毫秒
1.
The production and metabolism of indole compounds in pure cultures of the ectendomycorrhizal strain MrgX, a common symbiont of Scots pine in forest nurseries, were investigated. Different indole compounds produced by this fungus were purified and identified by thin-layer chromatography, high-performance liquid chromatography and mass spectrometry. Indole-3-acetic acid (IAA) and indole-3-carboxylic acid were the most abundant. Although MrgX is able to synthesize IAA when cultivated on a medium without tryptophan, much higher IAA production was obtained when 1 mM tryptophan was added. Buffering of the medium at pH 5.8 was shown to be essential for IAA accumulation in the culture filtrate. In vitro IAA-synthesizing activity of the enzymes extracted from the mycelia of MrgX was also maximal when mycelia were grown in a buffered, tryptophan-supplemented medium. The hydrogen ion concentration strongly affected in vivo activity of IAA-synthesizing enzymes. This activity was rather weak at acid pH and was stimulated by increase in pH up to 8.5. These results and their possible significance for ectendo-mycorrhizal symbiosis are discussed with reference to the hormonal metabolism of ectomycorrhizal fungi and ectomycorrhizae. 相似文献
2.
Jinichiro Koga Takashi Adachi Hidemasa Hidaka 《Molecular & general genetics : MGG》1991,226(1-2):10-16
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld. 相似文献
3.
Associative bacteria of terrestrial (Paphiopedilum appletonianum) and epiphytic (Pholidota articulata) tropical orchids were investigated. Microbial community of epiphytic plant differed from that of the terrestrial one. Streptomyces, Bacillus, Pseudomonas, Burkholderia, Erwinia and Nocardia strains populated Paphiopedilum roots, whereas Pseudomonas, Flavobacterium, Stenotrophomonas, Pantoea, Chryseobacterium, Bacillus, Agrobacterium, Erwinia, Burkholderia and Paracoccus strains colonized Pholidota roots. Endophytic bacteria populations were represented with less diversity: Streptomyces, Bacillus, Erwinia and Pseudomonas genera were isolated from P. appletonianum, and Pseudomonas, Bacillus, and Flavobacterium genera were isolated from Ph. articulata. Microorganisms produced indole-3-acetic acid (IAA). Variations in its biosynthesis among the strains of the same genus were also observed. The highest auxin level was detected during the stationary growth phase. Biological activity of microbial IAA was proved by treatment of kidney bean cuttings with bacterial supernatants, revealing considerable stimulation of root formation and growth. 相似文献
4.
在吲哚乙酸不同位点偶联载体蛋白对其抗体特异性的影响 总被引:2,自引:0,他引:2
分别选择吲哚乙醇分子上的C1位羧基和吲哚环上的N位作为偶联载体蛋白的位点,用混合酸酐法和甲醛搭桥法分别合成了两种免疫原IAA—CO—NH一HSA和IAA-N-BSA,并进而制得了对吲哚乙酸侧链识别能力不同的两种多克隆抗体,分别可特异识别甲酯化IAA和游离态IAA;用碳化二亚胺法和甲醛搭桥法分别合成IAA—CO—NH-BSAbIAA—N—OVA两种复合物,以之为包被物,建立了两种IAAELISA。其灵敏度分别为0.35pmol和1.80ppmol;检测范围分别为0.78~800pmol和1.95~2000pmol;批内变异系数分别为4.45%和4.79%;批间变异系数分别为1.15%和1.50%。笔者用这两种ELISA检测了兰花气生根和桑树苗样品中IAA的含量,发现两种检测结果相当一致。 相似文献
5.
Nehemia Aharoni 《Physiologia plantarum》1985,64(4):438-444
The antagonistic effects of ethylene and Ag+ on the metabolism of [1-14 C]indole-3-acetic acid (IAA) and on the rates of ethylene production were studied in tobacco leaf discs ( Nicotiana rustica var. Brasilia ). During the first 10 h of incubation, Ag+ -pretreated leaf discs contained more free [14 C]IAA than untreated ones due to decreased oxidative decarboxylation, and the discs also produced more ethylene. Exogenously supplied ethylene nullified these effects of Ag+ . However, the most pronounced effect of Ag+ in increasing ethylene production, as well as the strongest antagonistic effect of exogenous ethylene, were found between 24 and 48 h of incubation. During this time span no effect on the level of free IAA and on its decarboxylation could be observed. It is suggested that ethylene exerted its autoinhibitory effect by a feedback control on the IAA-induced ethylene biosynthesis. Possible mechanisms for the autoinhibitory effect of ethylene are discussed. 相似文献
6.
Free-living nitrogen fixing bacteria were isolated from rhizosphere of seven different plant namely sesame, maize, wheat, soybean, lettuce, pepper and rice grown in Chungbuk Province, Korea. Five isolates with nitrogenase activity above 150nmol(-1) mg(-1) protein were identified based on, phenotypic and 16S rDNA sequences analysis. The strains were identified as Stenotrophomonas maltophilia (PM-1, PM-26), Bacillus fusiformis (PM-5, PM-24) and Pseudomonas fluorescens (PM-13), respectively. All the isolates produced indole-3-acetic acid (IAA), in the presence of tryptophan, ranging from 100.4 microg ml(-1) (PM-13) to 255 microg ml(-1) (PM-24). The isolate PM-24 (Bacillus fusiformis) exhibiting highest nitrogenase activity (3677.81 nmol h(-1) mg(-1) protein) and IAA production (255microg ml(-1)) has a promising potential for developing as a plant growth promoting rhizobacteria. 相似文献
7.
Batch and fed batch cultures of Azospirillum brasilense Sp245 were conducted in a bioreactor. Growth response, IAA biosynthesis and the expression of the ipdC gene were monitored in relation to the environmental conditions (temperature, availability of a carbon source and aeration). A. brasilense can grow and produce IAA in batch cultures between 20 and 38 degrees C in a standard minimal medium (MMAB) containing 2.5 gl(-1)l-malate and 50 microgml(-1) tryptophan. IAA synthesis requires depletion of the carbon source from the growth medium in batch culture, causing growth arrest. No significant amount of IAA can be detected in a fed batch culture. Varying the concentration of tryptophan in batch experiments has an effect on both growth and IAA synthesis. Finally we confirmed that aerobic growth inhibits IAA synthesis. The obtained profile for IAA synthesis coincides with the expression of the indole-3-pyruvate decarboxylase gene (ipdC), encoding a key enzyme in the IAA biosynthesis of A. brasilense. 相似文献
8.
Incubation of sections of various tissues of Pinus pinea L. with a relatively low concentration (3.6 μM) of indole-3-acetic acid-2-14C (IAA) resulted in the formation of two major metabolites. The first, which has not been identified, seemed to be a polar acidic compound and the second was identified as indole-3-acetylaspartic acid (IAAsp). The polar acidic metabolite has been found to be the major metabolite in needles, shoot wood and roots, while IAAsp has been found to be the major metabolite in shoot bark. Increasing the concentration of IAA in the incubation medium resulted in an increase in the formation of a third metabolite which proved to be l-O-(indole-3-acetyl)-β-d -glucose (IAGlu) and a concomitant decrease in the amount of the polar acidic metabolite. This phenomenon was prominent particularly in needles. IAGlu was isolated from needles and IAAsp was isolated from shoot bark by means of polyvinylpolypyrrolidone column chromatography and preparative thin-layer chromatography. IAGlu was identified by comparison with authentic material by co-chromatography in three different solvent systems and by 1H-nuclear magnetic resonance analysis. IAAsp was identified by comparison with authentic material by gas-liquid chromatography and 1H-nuclear magnetic resonance analysis. Several aspects of formation, separation and isolation of IAA metabolites are discussed. 相似文献
9.
Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole-3-acetic acid 总被引:9,自引:0,他引:9
Stanislav Yu. Veselov Guzel R. Kudoyarova Naum L. Egutkin Vaid Z. Gyuli-Zade Aelita R. Mustafina Ella M. Kof 《Physiologia plantarum》1992,86(1):93-96
Based on the distribution constant of IAA, the efficiency of solvent partitioning has been improved by modifying the proportions of the solvents. IAA is recovered almost quantitatively by this method which also renders further sample reduction superfluous. Selective IAA recovery is supported by the distribution of immunoreactive materials on chromatograms. This modified scheme simplifies prepurification of samples for more reliable immunoassay. 相似文献
10.
Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons 总被引:2,自引:0,他引:2
Endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinins [zeatin (Z) zeatin riboside, dihydrozeatin, dihydrozeatin
riboside, N6-isopentenyl adenine (iP) and N6-isopentenyladenine riboside] were evaluated in hazelnut (Corylus avellana L.) cotyledons of different developmental stage and genetic source for their somatic embryogenic capacity. There was an inverse
correlation between the embryogenic potential of cotyledons and the degree of maturity of zygotic embryos, the first characteristic
being associated with iP-type cytokinins and the second with Z-type cytokinins. Although the differences in total cytokinin,
ABA and IAA contents between the cotyledons were small, the IAA/ABA and, mainly, the iP-type/Z-type cytokinin ratios were
found to be two good indexes of the embryogenic competence of explants, suggesting that the endogenous hormonal balance is
a very important factor defining the in vitro potential of hazelnut cotyledons.
Received: 6 January 1997 / Revision received: 3 March 1997 / Accepted 1 April 1997 相似文献
11.
Kinetin treatment increased the level of an extractable indoleacetyl conjugate, apparently indoleacetylaspartic acid (IAAsp) in germinating seeds and young plants of Phaseolus vulgaris L. cv. Alabaster. The level of this substance in extracts of treated seeds was always higher than that from water treated seeds irrespective of whether the seeds had been extracted 24, 48 or 72 h after the beginning of the treatment. In all parts of young bean plants treated with kinetin there was more of the substance than in the corresponding parts of water treated plants. 相似文献
12.
Snježana Antolić Eduard Dolušić Erika K. Kožić Biserka Kojić-Prodić Volker Magnus Michael Ramek Sanja Tomić 《Plant Growth Regulation》2003,39(3):235-252
2-Methylindole-3-acetic acid (2-Me-IAA) is a known auxin, but its 2-ethyl homologue has been considered inactive. Here we show that the compound previously bioassayed as 2-ethylindole-3-acetic acid (2-Et-IAA) was, in fact, 3-(3-methylindol-2-yl)propionic acid. The proper 2-Et-IAA and its 2-(n-propyl) homologue (2-Pr-IAA) are prepared, unambiguously characterized, and their auxin activity is demonstrated in the Avena coleoptile-section straight-growth test. Their half-optimal concentrations are approximately the same as for 2-Me-IAA (2 × 10–5mol L–1), and hence about ten times larger than for unsubstituted indole-3-acetic acid (IAA) and its derivatives alkylated in positions 4, 5, 6 or 7. The optimal response elicited by 2-Et-IAA and 2-Pr-IAA is about half that observed for 2-Me-IAA. These characteristics place the three 2-alkyl-IAAs along the borderline between the classes of strong and weak auxins, thus corroborating the results of interaction similarity analysis, a mathematical approach based on the capability of auxin molecules to participate in non-bonding interactions with a generalized receptor protein. X-ray diffraction analysis shows no explicit structural features to be blamed for the decrease in auxin activity caused by attaching a 2-alkyl substituent to the IAA molecule; sterical interference of the 3-CH2COOH group and the 2-alkyl moiety is barely recognizable in the crystalline state. Quantum-chemical calculations and molecular dynamics simulations suggest that 2-alkyl-IAAs, in the absence of crystal-packing restraints, prefer conformations with the CH2-COOH bond tilted to the heterocyclic ring system. Substantially higher conformational energy (and hence lower abundance) is predicted for planar conformers which were previously shown to prevail for IAA and many of its derivatives substituted in the benzene moiety of the indole nucleus. This shift in the rotational preferences of the -CH2COOH moiety may be one of the reasons for the reduced plant-growth promoting activity of 2-alkyl-IAAs. 相似文献
13.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(2):129325
BackgroundHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.MethodsScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.ResultsIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.ConclusionsThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.General significanceWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution. 相似文献
14.
Barkawi LS Tam YY Tillman JA Pederson B Calio J Al-Amier H Emerick M Normanly J Cohen JD 《Analytical biochemistry》2008,372(2):177-188
To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid. 相似文献
15.
We have applied atomic force microscopy (AFM) to the measurement of BAL 31 nuclease activities. BAL 31 nuclease, a species
of exonuclease, is used to remove unwanted sequences from the termini of DNA before cloning. For cutting out only the appropriate
sequences, it is important to know the nuclease properties, such as digestion speed and the distribution of the lengths of
the digested DNA. AFM was used to obtain accurate measurements on the lengths of DNA fragments before and after BAL 31 nuclease
digestion. We analyzed 4 DNAs with known number of base pairs (288, 778, 1818, and 3162 base pairs) for correlating the contour
length measured by AFM with the number of base pairs under the deposition conditions used. We used this calibration for analyzing
DNA degradation by BAL 31 nuclease from the AFM measurement of contour lengths of digested DNAs. In addition, the distribution
of digested DNA could be analyzed in more detail by AFM than by electrophoresis, because digested DNA were measured as a population
by electrophoresis, but were measured individually by AFM. These results show that AFM will be a useful new technique for
measuring nuclease activities.
Received: 8 August 1997 / Accepted: 10 September 1997 相似文献
16.
Involvement of naphthalene dioxygenase in indole-3-acetic acid biosynthesis by Pseudomonas putida 总被引:1,自引:0,他引:1
Mordukhova EA Sokolov SL Kochetkov VV Kosheleva IA Zelenkova NF Boronin AM 《FEMS microbiology letters》2000,190(2):279-285
Two variants of plant growth-promoting strain Pseudomonas putida BS1380 harboring the naphthalene degradative plasmid pBS2 and the recombinant plasmid pNAU64 that contains the genes encoding for naphthalene dioxygenase were constructed by conjugation. The ability of this strain to produce phytohormone indole-3-acetic acid from different carbon sources was studied. Indole-3-acetic acid synthesis by these transconjugants was 15-30 times as much in contrast to a wild-type strain with glucose as the sole carbon source. No difference was observed in other carbon or nitrogen sources. It is suggested that naphthalene dioxygenase is involved in the conversion of indole-3-pyruvic acid to indole-3-acetic acid. 相似文献
17.
Kwang-Seuk Ko Rahman M. Mizanur Joy M. Jackson Lin Liu Nicola L.B. Pohl 《Analytical biochemistry》2013
Sugar nucleotidyltransferases, or nucleotide sugar pyrophosphorylases, are ubiquitous enzymes whose activities have been correlated to disease states and pathogen virulence. Here we report a rapid “one-pot” method to identify a range of sugar nucleotidyltransferase activities of purified proteins or in cell lysates using a mass-differentiated carbohydrate library designed for mass spectrometry-based analysis. 相似文献
18.
In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. 相似文献
19.
The indole-3-pyruvate decarboxylase gene (ipdC), coding for a key enzyme of the indole-3-pyruvic acid pathway of IAA biosynthesis in Azospirillum brasilense SM was functionally disrupted in a site-specific manner. This disruption was brought about by group II intron-based Targetron
gene knock-out system as other conventional methods were unsuccessful in generating an IAA-attenuated mutant. Intron insertion
was targeted to position 568 on the sense strand of ipdC, resulting in the knock-out strain, SMIT568s10 which showed a significant (∼50%) decrease in the levels of indole-3-acetic
acid, indole-3-acetaldehyde and tryptophol compared to the wild type strain SM. In addition, a significant decrease in indole-3-pyruvate
decarboxylase enzyme activity by ∼50% was identified confirming a functional knock-out. Consequently, a reduction in the plant
growth promoting response of strain SMIT568s10 was observed in terms of root length and lateral root proliferation as well
as the total dry weight of the treated plants. Residual indole-3-pyruvate decarboxylase enzyme activity, and indole-3-acetic
acid, tryptophol and indole-3-acetaldehyde formed along with the plant growth promoting response by strain SMIT568s10 in comparison
with an untreated set suggest the presence of more than one copy of ipdC in the A. brasilense SM genome. 相似文献