首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody prepared against the 55,000 dalton subunit of reconstituted chick gizzard 100 A filaments (anti-G55K) bound to the 100 Å filaments of chick smooth muscle, cardiac muscle, and skeletal muscle cells, and to the 100 Å filaments of Schwann cells and satellite glial cells of the peripheral nervous system. Anti-G55K did not bind to replicating presumptive myoblasts, fibroblasts, chondroblasts, pigment cells, neurons, or to central nervous system glial cells. This contrasted with the wider range of binding of antibody to the 58,000 dalton subunit of chick fibroblast 100 A filaments (anti-F58K) which bound to the 100 Å filaments of all cell types examined except hepatocytes and skin epithelial cells. Anti-G55K staining revealed a morphologically distinct distribution of 100 A filaments in the three types of muscle cells. Spindle shaped smooth muscle cells exhibited dense fluorescent staining near the poles of the cells, and also exhibited unique patches of fluorescent material after cytochalasin B and Colcemid treatment. In myotubes, the fluorescence was limited to longitudinal bundles of filaments between the striated myofibrils. Cardiac cells contained uniformly distributed fine filaments. Lastly, smooth muscle cells in various phases of mitosis bound the anti-G55K, whereas replicating presumptive skeletal myoblasts failed to bind the anti-G55K.  相似文献   

2.
MYOSIN-LIKE AGGREGATES IN TRYPSIN-TREATED SMOOTH MUSCLE CELLS   总被引:4,自引:2,他引:2       下载免费PDF全文
Segments of the lower small intestine of the toad Bufo marinus were excised and soaked for approximately 2 hr in Ringer's solution (pH 7.4 or 7.8) containing crystalline trypsin and then fixed for electron microscopy at approximately the same pH. Thin sections of the tunica muscularis of these specimens show smooth muscle cells ranging in appearance from severely damaged at one extreme to apparently unaffected at the other. Among these are cells at intermediate stages, including some which exhibit large and conspicuous populations of thick filaments closely resembling artificially prepared aggregates of smooth muscle myosin. The thick filaments have the form of tactoids ~ 250–300 A in diameter in their middle regions and are ~ 0.5–1.0 µ in length. In some preparations they also display an axial periodicity approximating 143 A. They are usually randomly oriented and segregated from the thin filaments, which tend to form closely packed, virtually crystalline bundles at the periphery of these cells. "Dense bodies" are absent from cells showing these changes. The simplest interpretation of these data is that smooth muscle myosin normally exists among the actin filaments in a relatively disaggregated state and that trypsin induces aggregation by altering the conformation of the myosin molecule. Alternatively, trypsin may act indirectly through an effect on some other smooth muscle protein which normally forms a stable complex with relatively disaggregated myosin.  相似文献   

3.
Summary An extensive network of intermediate filaments that interconnected cytoplasmic dense bodies and connected the dense bodies to the cell surface was revealed in double-fixed, tannic acid-stained preparations of ascidian smooth muscle. The filament network ran through spaces in the continuous network of myofibrils, connecting them longitudinally, obliquely and transversely to form an intimately associated, dual network. In their transverse passage, the intermediate filaments ran across myofibrils along I-zones exclusively, interconnecting successive dense bodies.The pattern of attachment of intermediate filaments to dense bodies was predominantly one-sided. The filaments, which themselves were not incorporated into the contractile apparatus, remained folded or unfolded between myofibrils and between sarcomere-like structures in synchrony with the contraction-relaxation cycles.These results suggest that the intermediate filaments mechanically maintain the organization and arrangement of myofibrils via an intimate association with the myofibrils in the regions of the dense bodies, in such a way that the filaments do not impede muscle function.Based on these observations, a new model for the network of intermediate filaments in smooth muscle cells is proposed.  相似文献   

4.
An extensive study of adult and developing smooth muscle has revealed the widespread occurrence of a distinct filament with an average diameter of about 100 A (termed the 100 A filament). Unlike that of myofilaments, their appearance in longitudinal section is uniform, but in transverse section they have a round profile, occasionally exhibiting a less electron-opaque core. The 100 A filaments are almost invariably preserved under a variety of fixation procedures, whereas myofilaments, particularly the thicker filaments, are preserved inconsistently. The 100 A filaments appear to be randomly oriented throughout the cytoplasm, either singly or in small groups, although they are sometimes concentrated in the juxtanuclear region of the smooth muscle cells. The intimate association of 100 A filaments with dark bodies, in both developing and adult smooth muscle cells, may indicate that these filaments either play a role in dark body formation or, at least, constitute a part of the dark body. The 100 A filaments are conspicuous in developing smooth muscle cells and occasionally form networks or clusters; they appear to decrease in relative number as maturation proceeds, but considerable numbers are still present in adult tissue.  相似文献   

5.
Dense bodies and actin polarity in vertebrate smooth muscle   总被引:11,自引:6,他引:5       下载免费PDF全文
The arrangement of cytoplasmic dense bodies in vertebrate smooth muscle and their relationship to the thin filaments was studied in cells from rabbit vas deferens and portal vein which were made hyperpermeable (skinned) with saponin and incubated with myosin subfragment 1 (S-1). The dense bodies were obliquely oriented, elongated structures sometimes appearing as chains up to 1.5 microns in length; they were often continuous across the cell for 200 to 300 nm and were interconnected by an oblique network of 10-nm filaments. The arrowheads, formed by S-1 decoration of actins, which inserted into both the sides and ends of dense bodies, always pointed away from the dense body, similar to the polarity of the thin filaments at the Z- bands of skeletal muscle. These results show that the cytoplasmic dense bodies function as anchoring sites for the thin filaments and indicate that the thin filaments, thick filaments, and dense bodies constitute a contractile unit.  相似文献   

6.
The Regulation of Catch in Molluscan Muscle   总被引:4,自引:0,他引:4  
Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++.  相似文献   

7.
A filamentous cytoskeleton in vertebrate smooth muscle fibers.   总被引:28,自引:7,他引:21       下载免费PDF全文
There are three classes of myofilaments in vertebrate smooth muscle fibers. The thin filaments correspond to actin and the thick filaments are identified with myosin. The third class of myofilaments (100 A diam) is distinguished from both the actin and the myosin on the basis of fine structure, solubility, and pattern of localization in the muscle fibers. Direct structural evidence is presented to show that the 100A filament constitute an integrated filamentous network with the dense bodies in the sarcoplasm, and that they are not connected to either the actin or myosin filaments. Examination of (a) isolated dense bodies, (b) series of consecutive sections through the dense bodies, and (c) redistributed dense bodies in stretched muscle fibers supports this conclusion. It follows that the 100-A filaments complexes constitute a structrally distinct filamentous network. Analysis of polyacrylamide gels after electrophoresis of cell fractions that are enriched with respect to the 100-A filaments shows the presence of a new muscle protein with a molecular weight of 55,000. This protein can form filamentous segments that closely resemble in structure the native, isolated 100-A filaments. The results indicate that the filamentous network has a structure and composition that distinguish it from the actin and myosin in vertebrate smooth muscle.  相似文献   

8.
Summary Myofilaments were isolated by gently homogenizing smooth muscle cells isolated from the pedal retractor muscle (PRM) of Mytilus edulis, and observed by electron microscopy. The thick filaments isolated in the presence of ATP (10–20 mM) had projections of myosin heads except near their centre (central bare zone). After extraction of myosin, the paramyosin core of the thick filaments showed a Bear-Selby net or a striated pattern with a main periodicity of 14.5 nm. Both the Bear-Selby net and the striated patterns had a polarity that reversed at the centre of the filament where the patterns were obscured. The thin filaments were attached to dense bodies. Decoration of the thin filaments with heavy meromyosin showed that they have opposite polarity on opposing sides of the dense body. The results indicate that the thick filaments are bipolar and also that the dense bodies are functionally analogous to the Z-disk of the striated muscle.  相似文献   

9.
SYNOPSIS. An electron-microscope study of the macronucleus and the micronucleus of Blepharisma intermedium Bhandary has been made. Sections show that the macronucleus is bounded by a double membrane. Inside, there are two types of bodies: (a) small irregular bodies, from 0.05 to 0.2 μ in diameter, and (b) larger bodies, from 0.4 to 0.6 μ in diameter. The former are intrepreted as cut ends of long, branching filaments traversing the nuclear cavity in all directions. They correspond to the DNA filaments obtained by centrifugation and KCN action on the macronucleus. Each filament is made of fibrils aboue 150 Å thick. The large bodies correspond to the nucleoli; they also show a fibrillar structure. They offer the added interest of displaying dense particles, from 100 to 800 Å in size, whose nature and significance are obscure. The micro-nucleus has a double membrane, and the contents are divisible into an electron-dense network and a material of low density which fills the interstices of the network.  相似文献   

10.
Heavy meromyosin (HMM) forms characteristic arrowhead complexes with actin filaments in situ. These complexes are readily visualized in sectioned muscle. Following HMM treatment similar complexes appear in sectioned fibroblasts, chondrogenic cells, nerve cells, and several types of epithelial cells. Thin filaments freshly isolated from chondrogenic cells also bind HMM and form arrowhead structures in negatively stained preparations. HMM-filament complexes are prominent in the cortex of a variety of normal metaphase and Colcemid-arrested metaphase cells. There is no detectable binding of HMM with other cellular components such as microtubules, 100-A filaments, tonofilaments, membranes, nuclei, or collagen fibrils. The significance of HMM-filament binding is discussed in view of the finding that arrowhead complexes form in types of cells not usually thought to contain actin filaments.  相似文献   

11.
Using a variety of preparative techniques for electron microscopy, we have obtained evidence for the disposition of actin and myosin in vertebrate smooth muscle. All longitudinal myofilaments seen in sections appear to be actin. Previous reports of two types of longitudinal filaments in sections are accounted for by technical factors, and by differentiated areas of opacity along individual filaments. Dense bodies with actin emerging from both ends have been identified in homogenates, and resemble Z discs from skeletal muscle (Huxley, 1963). In sections, short, dark-staining lateral filaments 15–25 A in diameter link adjacent actin filaments within dense bodies and in membrane dense pataches. They appear homologous with Z-disc filaments. Similar lateral filaments connect actin to plasma membrane. Dense bodies and dense patches, therefore, are attachment points and denote units analogous to sarcomeres. In glycerinated, methacrylate-embedded sections, lateral processes different in length and staining characteristics from lateral filaments in dense bodies exist at intervals along actin filaments. These processes are about 30 A wide and resemble heavy meromyosin from skeletal muscle. They also resemble heads of whole molecules of myosin in negatively stained material from gizzard homogenates. Intact single myosin molecules and dimers have been found, both free and attached to actin, even in media of very low ionic strength. Myosin can, therefore, exist in relatively disaggregated form. Models of the contraction mechanism of smooth muscle are proposed. The unique features are: (1) Myosin exists as small functional units. (2) Movement occurs by interdigitation and sliding of actin filaments.  相似文献   

12.
Specific developmental changes in smooth muscle were studied in gizzards obtained from 6-, 8-, 10-, 12-, 14-, 16-, 18-, and 20-day chick embryos and from 1- and 7-day posthatch chicks. Myoblasts were actively replicating in tissue from 6-day embryos. Cytoplasmic dense bodies (CDBs) first appeared at Embryonic Day 8 (E8) and were recognized as patches of increased electron density that consisted of actin filaments (AFs), intermediate filaments (IFs), and cross-connecting filaments (CCFs). Although the assembly of CDBs was not synchronized within a cell, the number, size, and electron density of CDBs increased as age increased. Membrane-associated dense bodies (MADBs) also could be recognized at E8. The number and size of MADBs increased as age increased, especially after E16. Filaments with the diameter of thick filaments first appeared at E12. Smooth muscle cells were able to divide as late as E20. The axial intermediate filament bundle (IFB) could first be identified in 1-day posthatch cells and became larger and more prominent in 7-day posthatch cells. Immunogold labeling of 1- and 7-day posthatch cells with anti-desmin showed that the IFB contained desmin IFs. The developmental events during this 23-day period were classified into seven stages, based primarily on the appearance and the growth of contractile and cytoskeletal elements. These stages are myoblast proliferation, dense body appearance, thick filament appearance, dense body growth, muscle cell replication, IFB appearance, and appearance of adult type cells. Smooth muscle cells in each stage express similar developmental characteristics. The mechanism of assembly of myofilaments and cytoskeletal elements in smooth muscle in vivo indicates that myofilaments (AFs and thick filaments) and filament attachment sites (CDBs and MADBs) are assembled before the axial IFB, a major cytoskeletal element.  相似文献   

13.
FINE STRUCTURE OF SMOOTH MUSCLE CELLS GROWN IN TISSUE CULTURE   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of smooth muscle cells of the embryo chicken gizzard cultured in monolayer was studied by phase-contrast optics and electron microscopy. The smooth muscle cells were irregular in shape, but tended to be elongate. The nucleus usually contained prominent nucleoli and was large in relation to the cell body. When fixed with glutaraldehyde, three different types of filaments were noted in the cytoplasm: thick (150–250 A in diameter) and thin (30–80 A in diameter) myofilaments, many of which were arranged in small bundles throughout the cytoplasm and which were usually associated with dark bodies; and filaments with a diameter of 80–110 A which were randomly orientated and are not regarded as myofilaments. Some of the aggregated ribosomes were helically arranged. Mitochondria, Golgi apparatus, and dilated rough endoplasmic reticulum were prominent. In contrast to in vivo muscle cells, micropinocytotic vesicles along the cell membrane were rare and dense areas were usually confined to cell membrane infoldings. These cells are compared to in vivo embryonic smooth muscle and adult muscle after treatment with estrogen. Monolayers of cultured smooth muscle will be of particular value in relating ultrastructural features to functional observations on the same cells.  相似文献   

14.
The structure of the intestinal cells of the parasitic nematode Haemonchus contortus is described. The cells have numerous microvilli about 0.09 μ in diameter; most being 5.5–7.5 μ in length. The microvillar (plasma) membrane is coated with a layer of amorphous material (glycocalyx) about 60 Å thick which is electron dense in sectioned preparations. Associated with the surface of this material, and filling the spaces between the microvilli, are filaments in the form of helices about 400 Å in diameter and of variable pitch. The helices appear to be flexible but they are aligned approximately with the long axes of the microvilli. There are up to ten helices per microvillus; they extend beyond the tips of the microvilli and are up to 10 μ long. The material has been obtained nearly pure in small amounts. It is primarily protein and it is proposed that it should be called contortin. The monomeric form (of molecular weight about 60,000) has been identified with a Y-shaped structure with arms about 45 Å long and 25 Å wide seen in negatively stained preparations. The helical filament appears to be formed by lateral polymerization of pairs of these units.  相似文献   

15.
Antibody prepared against the 55,000 dalton subunit of reconstituted chick gizzard 100 A filaments (anti-G55K) bound to the 100 A filaments of chick smooth muscle, cardiac muscle, and skeletal muscle cells, and to the 100 A filaments of Schwann cells and satellite glial cells of the peripheral nervous system. Anti-G55K did not bind to replicating presumptive myoblasts, fibroblasts, chondroblasts, pigment cells, neurons, or to central nervous system glial cells. This contrasted with the wider range of binding of antibody to the 58,000 dalton subunit of chick fibroblast 100 A filaments (anti-F58K) which bound to the 100 A filaments of all cell types examined except hepatocytes and skin epithelial cells. Anti-G55K) staining revealed a morphologically distinct distribution of 100 A filaments in the three types of muscle cells. Spindle shaped smooth muscle cells exhibited dense fluorescent staining near the poles of the cells, and also exhibited unique patches of fluorescent material after cytochalasin B and Colcemid treatment. In myotubes, the fluorescence was limited to longitudinal bundles of filaments between the striated myofibrils. Cardiac cells contained uniformly distributed fine filaments. Lastly, smooth muscle cells in various phases of mitosis bound the anti-G55K, whereas replicating presumptive skeletal myoblasts failed to bind the anti-G55K.  相似文献   

16.
An actin-like protein from amoebae of dictyostelium discoideum   总被引:5,自引:0,他引:5  
An actin-like protein has been isolated and purified from amoebae of Dictyostelium discoideum. The 3.7S protein polymerizes upon addition of 0.1 m KCl to a polymer of 26S. An increase in viscosity accompanies this polymerization and electron micrographs have revealed beaded, helical filaments with a diameter of 60–75 Å and an axial periodicity of 350 Å. These F-actin-like filaments produced a 5-fold activation of muscle myosin Mg-ATPase at low ionic strength. When incubated with rabbit muscle heavy meromyosin (HMM) the amoeba F-actin-like protein formed typical “arrowhead” structures with polarized binding of HMM and arrowhead spacings of 350 Å. In SDS polyacrylamide disc gel electrophoresis the purified amoeba protein migrates as a single band corresponding to a molecular weight of 48,000 daltons. The amino acid composition is very similar to that of muscle actin and includes the unusual amino acid 3-methylhistidine.  相似文献   

17.
Summary The mesangium of the glomerulus of dogs and mice was examined. Basement membranes and their branches in the mesangial region were described. Stress was laid upon the intercapillary location of mesangial cells which are always separated by endothelial cells from capillary lumina and upon their cytoarchitectural features: irregularly-shaped nuclei, a dense and homogeneously, finely granular cytoplasm with centrally distributed organelles and peripherally placed filaments, a well developed endoplasmic reticulum with abundant numbers of RNP granules, peripherally placed cytoplasmic densities comparable to attachment bodies of smooth muscle cells, as well as cytoplasmic protrusions into endothelial cells (Intrakapillarhöckerchen).Based upon the above findings and upon a comparison of smoth muscle cells of arteries with mesangial cells located close to and distant from the vascular pole (Gefäßpol), the conclusion was reached that mesangial cells differ essentially from endothelial cells and from fibroblasts and that they bear a marked resemblance to smooth muscle cells.An attempt was made to relate the structure of mesangial cells to their function.  相似文献   

18.
The common renal adenocarcinoma of the leopard frog was studied in thin sections with the electron microscope. Approximately a third of the tumors examined were found to contain spheroidal bodies of uniform size and distinctive morphology that are believed to be virus particles. These consist of hollow spheres (90 to 100 mµ) having a thick capsule and a dense inner body (35 to 40 mµ) that is eccentrically placed within the central cavity (70 to 80 mµ). Virus particles of this kind occur principally in the cytoplasm but occasionally they are also found in the nucleus and in the extracellular spaces of the tumor. The intranuclear inclusion bodies that are visible with the light microscope are largely comprised of hollow, spherical vesicles with thin limiting membranes. These are embedded in a finely granular matrix. A few of the thin walled vesicles contain a dense inner body like that of the cytoplasmic virus particles. This suggests that they may be immature virus particles. The inclusion bodies are believed to be formed in the course of virus multiplication but they usually contain very few mature virus particles. Bundles of dense filaments and peculiar vacuolar inclusions also occur in the cytoplasm of the tumor cells. These seem to be related in some way to the presence of virus but their origin and significance remain obscure. These findings are discussed in relation to previous work suggesting that the Lucké adenocarcinoma is caused by an organ-specific filtrable agent. It is concluded that the "virus particles" found in electron micrographs of the tumor cells may be the postulated tumor agent. On the other hand, the possibility remains that the particles described here are not those that are causally related to the tumors.  相似文献   

19.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号