首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Question: Is the vegetation of meadow and mountain steppes distinct from the ground vegetation of light taiga forests in the transitional zone between these biomes? Location: Western Khentey Mountains, northern Mongolia. Methods: Vegetation was recorded from 100‐m2 plots from all dominant types of light taiga forest and dry grassland. Distinctness of ground vegetation was studied with Detrended Correspondence Analysis (DCA). Results: Ground vegetation in the light taiga was significantly different from the herbal vegetation of meadow and mountain steppes. Clear separation was only absent for the Car ex amgunensis meadow steppes that occur in a narrow strip along the forest edge and are partly shaded by trees. Forest and steppe communities followed a moisture gradient according to the DCA ordination with light taiga forests at the moistest sites and steppe communities at the driest sites. Ulmus pumila open woodlands diverged from this pattern, because of their close spatial and phytosociological relationship to mountain steppes. Conclusions: The present results do not support the assumption that grasslands in Mongolia's transitional zone between forest and steppe would generally resemble the ground vegetation of light taiga forests. This contradicts a published hypothesis stating that the vegetation of meadow and mountain steppes would not clearly differ from ground vegetation of light taiga forests in the forest‐steppe transitional zone of Mongolia.  相似文献   

2.

Aims

Eurasian forest‐steppes are among the most complex non‐tropical terrestrial ecosystems. Despite their considerable scientific, ecological and economic importance, knowledge of forest‐steppes is limited, particularly at the continental scale. Here we provide an overview of Eurasian forest‐steppes across the entire zone: (a) we propose an up‐to‐date definition of forest‐steppes, (b) give a short physiogeographic outline, (c) delineate and briefly characterize the main forest‐steppe regions, (d) explore forest‐steppe biodiversity and conservation status, and (e) outline forest‐steppe prospects under predicted climate change.

Location

Eurasia (29°–56°N, 16°–139°E).

Results and Conclusions

Forest‐steppes are natural or near‐natural vegetation complexes of arboreal and herbaceous components (typically distributed in a mosaic pattern) in the temperate zone, where the co‐existence of forest and grassland is enabled primarily by the semi‐humid to semi‐arid climate, complemented by complex interactions of biotic and abiotic factors operating at multiple scales. This new definition includes lowland forest–grassland macromosaics (e.g. in Eastern Europe), exposure‐related mountain forest‐steppes (e.g. in Inner Asia), fine‐scale forest–grassland mosaics (e.g. in the Carpathian Basin) and open woodlands (e.g. in the Middle East). Using criteria of flora, physiognomy, relief and climate, nine main forest‐steppe regions are identified and characterized. Forest‐steppes are not simple two‐phase systems, as they show a high level of habitat diversity, with forest and grassland patches of varying types and sizes, connected by a network of differently oriented edges. Species diversity and functional diversity may also be exceptionally high in forest‐steppes. Regarding conservation, we conclude that major knowledge gaps exist in determining priorities at the continental, regional, national and local levels, and in identifying clear target states and optimal management strategies. When combined with other threats, climate change may be particularly dangerous to forest‐steppe survival, possibly resulting in compositional changes, rearrangement of the landscape mosaic or even the latitudinal or altitudinal shift of forest‐steppes.  相似文献   

3.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe   总被引:1,自引:0,他引:1  

Background

The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.

Methodology/Principal Findings

In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.

Conclusions/Significance

These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought.  相似文献   

4.
中昆仑山北坡及内部山原的植被类型   总被引:3,自引:0,他引:3       下载免费PDF全文
 中昆仑山西始乌鲁乌斯河,东迄安迪河,东西迤逦600余公里,平均海拔高度6000m。该区有野生种子植物52科,211属,398种。植物区系以种类成份单纯、地理成份复杂为特征。北坡中山带和高山带下部年降水量300—500mm,草原带发育完整,尤以中段的策勒山地草原发育最好。草原带以上高寒荒漠不存在,高寒草甸则有一定发育。中昆仑山北坡植被类型的垂直带谱是:1)山地荒漠,自山麓线多在2200—2500m,个别在3000m;2)山地荒漠草原在3000—3200m;3)山地真草原在3200—3600m;4)高寒草原在3600—3800m(阳坡上升到4200m以上);5)高寒草甸在3800—4200m;6)高山垫状植被仅见于东段山地和高寒草甸复合分布;7)高山流石坡稀疏植被在4200—5000m。中昆仑山内部山原极端寒冷干旱,多为砾漠所占据,高寒荒漠和高寒荒漠草原呈片状星散分布。  相似文献   

5.

Background

Livestock grazing is the most prevalent land use of grasslands worldwide. The effects of grazing on plant C, N, P contents and stoichiometry across hierarchical levels, however, have rarely been studied; particularly whether the effects are mediated by resource availability and the underpinning mechanisms remain largely unclear.

Methodology/Principal Findings

Using a multi-organization-level approach, we examined the effects of grazing on the C, N, and P contents and stoichiometry in plant tissues (leaves and roots) and linkages to ecosystem functioning across three vegetation types (meadow, meadow steppe, and typical steppe) in the Inner Mongolia grassland, China. Our results showed that the effects of grazing on the C, N, and P contents and stoichiometry in leaves and roots differed substantially among vegetation types and across different hierarchical levels (species, functional group, and vegetation type levels). The magnitude of positive effects of grazing on leaf N and P contents increased progressively along the hierarchy of organizational levels in the meadow, whereas its negative effect on leaf N content decreased considerably along hierarchical levels in both the typical and meadow steppes. Grazing increased N and P allocation to aboveground in the meadow, while greater N and P allocation to belowground was found in the typical and meadow steppes. The differences in soil properties, plant trait-based resource use strategies, tolerance or defense strategies to grazing, and shifts in functional group composition are likely to be the key mechanisms for the observed patterns among vegetation types.

Conclusions/Significance

Our findings suggest that the enhanced vegetation-type-level N contents by grazing and species compensatory feedbacks may be insufficient to prevent widespread declines in primary productivity in the Inner Mongolia grassland. Hence, it is essential to reduce the currently high stocking rates and restore the vast degraded steppes for sustainable development of arid and semiarid grasslands.  相似文献   

6.
A total of 31 suface sediment samples were collected from West Kunlun Mountain in south Xinjiang Autonomous Region in northwest China. These samples are from seven types of vegetation: Picea schrenkiana Fisch. et Mey. forest, Sabina Spach. woodland, sub-alpine steppe, alpine meadow, desert vegetion, cushion-vegetation and vegetation adjancent to glaciers. Pollen percentages and pollen concentrations were calculated in all samples. The dominant pollen types in the region are Chenopodiaceae, Artemisia, Picea, Ephedra, Gramineae, Cyperaceae, Rosaceae, Leguminosae, Compositae etc. In order to reveal the relationship between pollen composition and the vegetation type from which the soil sample was collected, principal component analysis and group average cluster analysis were employed on the pollen data. The results revealed that the major vegetation types in this region could be distinguished by pollen composition: a. Samples from desert vegetation were dominated by pollen of Chenopodiaceae (about 60195%). The percentages of all other pollen types were low. b. Picea forest samples were rich in Picea pollen (about 20%) Sabina forest had more Sabina pollen grains than other vegetation types (about 5%, others <1%). Pollen percentages of Artemisia, Chenopodiaceae and Ephedra were comparatively higher (each about 20%) in these samples from the two types of vegetations. C. Pollen percentages of Artemisia, Cyperaceae, Gramineae and Chenopodiaceae were high in both sub-alpine steppe and alpine meadow. But steppe containal more Artemisia and Chenopodiaceae (steppe 33.75% and 32.30%, meadow 15.57% and 19.48% in average), less Cyperaceae and Gramineae (steppe 2.58% and 7.60%, meadow 22.35% and 12.93% in average) than meadow. d. Samples from cushion-vegetation and vegetation adjacent to glaciers were mainly composed of pollen grains transported from other sites. It was not easy to distinguish them from other vegetation types. Principal component analysis and cluster analysis distinguish samples from Picea forest, Sabina woodland, sub-alpine steppe, alpine meadow and desert vegetation. Therefore we think it will be possible to apply the module to reconstruct past vegetation in this region and other similar regions. Regression analysis was also applied to reveal the relationships between pollen and plant percentages of Artemisia, Chenopodiaceae, Cyperaceae and Gramineae. The results indicated that a linear relationship existed between pollen and plant percentages for Artemisia, Chenopodiaceae and Cyperaeeae.  相似文献   

7.
Flora similarity was assessed using complete floristic lists of five ecotopes in each of four mounds along the transect from meadow steppes to desert steppes. It was found that the circumapical similitude of floras is more significant than the expositional similitude. Soil analysis in separate ecotopes showed that regular changes in the biogeochemical features are manifested along the topographic gradient and under the effect of the insolation exposure of slopes in local (mound) ecosystems. It was noted that the slopes are characterized by the most abundant steppe vegetation classes in the phytosociological spectrum of mound ecotopes.  相似文献   

8.
《Plant Ecology & Diversity》2013,6(5-6):509-520
Background: Burial mounds (kurgans) of Eurasian steppes are man-made habitat islands that have the potential to harbour rich plant diversity due to micro-habitats associated with their topography.

Aims: We assessed whether kurgan micro-habitats harboured different species pools and functional groups from those found on the surrounding steppes. In addition, we asked if these mounds were affected by different grazing intensities from those on the surrounding vegetation.

Methods: We surveyed kurgan micro-habitats (northern and southern slopes, surrounding ditch) and adjacent steppe plains in non-grazed, moderately grazed and heavily grazed sites in northern Kazakhstan. We analysed differences in species composition of four habitats under three grazing regimes using Generalised Linear Mixed Models, PCA ordination and indicator species analysis.

Results: Kurgan micro-habitats had diverse vegetation and supported the co-existence of plant species with different environmental needs. We identified 16 steppe specialists confined to kurgan micro-habitats. Steppe vegetation was well-adapted to extensive grazing, although heavy grazing supported ruderals and a decline in steppe specialists. There was a significant interaction between grazing intensity and habitat type: heavy grazing supported ruderals and suppressed steppe specialists especially on the slopes.

Conclusions: We highlighted that kurgans play an important role as maintaining high plant diversity locally in extensive steppe plains in Central-Asia by increasing environmental heterogeneity and supporting specialist species confined to these micro-habitats.  相似文献   

9.
Aims Extreme climate events have become more severe and frequent with global change in recent years. The Chinese temperate steppes are an important component of the Eurasian steppes and highly sensitive and vulnerable to climatic change. As a result, the occurrence of extreme climate events must have strong impacts on the temperate steppes. Therefore, understanding the spatio-temporal trends in extreme climate is important for us to assess the sensitivity and vulnerability of Chinese temperate steppes to climatic changes. This research had two specific objects to (i) specify the temporal changes in extreme climate events across the whole steppe and (ii) compare the trend differences for extreme climate events in different types of steppes—meadow steppe, typical steppe and desert steppe.  相似文献   

10.
叶永昌  周广胜  殷晓洁 《生态学报》2016,36(15):4718-4728
定量评估气候变化对内蒙古草原植被分布及其净第一性生产力的影响有助于理解干旱区域生态系统结构和功能对气候变化的响应。基于最大熵模型(MaxEnt)评价了气候因子的重要性,进而模拟了1961-2010年内蒙古草原植被的地理分布,同时应用综合模型模拟了净第一性生产力变化。研究表明,湿润指数(MI)、年降水量(P)、最暖月平均温度(Tw)和最冷月平均温度(Tc)是决定草原植被分布的主导气候因子。1961-2010年内蒙古草甸草原、典型草原和荒漠草原分布面积分别减少了5%、1%和62%,草原面积整体减少了11%,预示着草原向着荒漠化的方向发展。降水是决定内蒙古草原净第一性生产力变化的最重要因素。  相似文献   

11.
东北地区植被物候时序变化   总被引:14,自引:6,他引:8  
俎佳星  杨健 《生态学报》2016,36(7):2015-2023
植被与气候的关系非常密切,植被物候可作为气候变化的指示器。东北地区位于我国最北部,是气候变化的敏感区域,研究该区植被物候对气候变化的响应对阐明陆地生态体统碳循环具有重要意义。利用GIMMS AVHRR遥感数据集得到了东北地区阔叶林、针叶林、草原和草甸4种植被25a(1982—2006年)的物候时序变化,得出4种植被春季物候都表现出先提前后推迟的现象,秋季物候的变化则比较复杂,阔叶林和针叶林整体上呈现出秋季物候推迟的趋势,草原和草甸则表现为提前-推迟-提前的趋势。应用偏最小二乘(Partial Least Squares)回归分析了该区域植被物候与气候因子之间的关系,结果表明:春季温度与阔叶林、针叶林和草甸春季物候负相关,前一年冬季温度与草原春季物候正相关,降水与植被春季物候的关系有点复杂;4种植被秋季物候与夏季温度均呈正相关,除草原外,其余3种植被秋季物候均与夏季降水负相关。植被春季物候可能主要受温度影响,而秋季物候很可能主要受降水控制。  相似文献   

12.
天山北坡植物土壤生态化学计量特征的垂直地带性   总被引:6,自引:0,他引:6  
生态化学计量工作专注于植物与土壤的元素比例关系及其环境解释等问题上,还需要分析在连续环境梯度上元素比例关系的变化规律以进一步加深已有的认识。受水热梯度的影响,植被与土壤在天山北坡均存在明显的垂直地带性,这为探讨植物土壤生态化学计量特征的垂直带谱提供了有利条件。在天山中段北坡海拔1000—3840m范围内,按海拔梯度对植物和土壤分别采样,测定其C、N、P含量。结果表明:(1)随海拔的升高,植物C、N、P含量及其计量比变化规律各不相同,C含量随海拔变化保持不变,仅山地针叶林显著低于亚高山灌丛草甸、高山垫状植被和山前灌木(P0.05);N含量、C∶P、N∶P随海拔先升高后降低,山地针叶林和亚高山灌丛草甸显著高于山地荒漠草原、山地草原、高山垫状植被(P0.05);P含量、C∶N则是随海拔先降低后升高,高山垫状植被显著高于其他植被类型,山地荒漠草原、山前灌木和高山草甸显著高于山地草原、针叶林和亚高山灌丛草甸(P0.05)。(2)从生活型角度,乔木、灌木和草本C、N含量、C∶N差异不显著,灌木P含量、C∶P、N∶P显著高于草本(P0.05);乔木和灌木更受P限制,草本更受N限制。(3)随海拔的升高,土壤C、N、P含量、C∶P、N∶P均先升高后降低,其中山地针叶林和亚高山灌丛草甸均显著高于山地荒漠草原和山地草原(P0.05),土壤C∶N表现为一直降低,山地荒漠草原显著高于其他植被类型(P0.05)。(4)植物C、N、P及计量比与土壤相关性分析中,仅植物C∶P与土壤C∶P相关性显著,且植物C、N、P含量与土壤相关系数小于植物C∶P、N∶P与土壤相关系数。在垂直地带性上,土壤主要通过生态化学计量比影响植物的生长。  相似文献   

13.
围封是退化草原生态系统恢复的有效措施之一,已在中国北方草原地区实施多年并取得良好的效果。由于不同退化草原生态系统具有完全不同的植被和土壤条件,围封对不同退化草原植物群落和土壤的恢复是否具有一致的影响,目前仍不清楚。对内蒙古地区轻度、中度和重度退化荒漠草原分别设置6年围封后,对植物群落特征和土壤理化性质进行了调查和测定。研究结果发现,围封显著提高了3种退化荒漠草原短花针茅(Stipa breviflora)和无芒隐子草(Cleistogenes songorica)种群以及群落的高度、盖度和地上生物量(P<0.05),表明围封从多组织层次使退化草原植物群落得到有效的恢复。围封总体提高了轻度和中度退化荒漠草原植物多样性,但降低重度退化荒漠草原的植物多样性。重度退化荒漠草原在围封后群落高度、盖度和地上生物量恢复效率显著高于轻度和中度退化的(P<0.05),表明围封对重度退化荒漠草原植被恢复更加有效。除轻度退化外,围封显著降低中度和重度退化荒漠草原土壤全碳、全氮、全磷、有效氮和速效磷含量(P<0.05),但对3种退化荒漠草原的土壤水分含量无显著影响,表明围封对不同退化荒漠草原土壤的影响具有滞后性。研究为荒漠草原围封成效评估提供理论指导和退化荒漠草原生态系统科学合理实施围封政策提供科学依据。  相似文献   

14.
青海祁连地区不同生境类型蝶类多样性研究   总被引:47,自引:4,他引:43  
于1997-1999年对青海祁连地区不同生境类型中蝴蝶多样性进行了研究。研究中依据海拔高度、气候、土壤和植被的不同将该地区的蝴蝶生境划分为5种类型:山缘农田、山地草原、森林草原、高寒灌丛草甸、裸岩。共收集蝴蝶4367只,隶属于6科35属53种,计算了5种生境类型中蝶类物种丰富度、相似性系数、多样性指数,其中,蝶类物种丰富度由小到大的顺序为:裸岩(6种)<山地草原(13种)<森林草原(14种)<高寒灌丛草甸(22种)<山缘农田(H′=2.7071)、高寒灌丛草甸(H′=2.7734);森林草原和山缘农田的相似性系数最高(0.3704),其次为山地草原和高寒灌丛草甸(0.2500,裸岩与其他生境类型的相似性系数最低。  相似文献   

15.
全球气候变暖对自然植被生长发育的影响已成为当今世界关注的重要问题.以1982—2015年植被归一化指数、白天温度(Tmax)、夜间温度(Tmin)、降水量、高程为基础数据,对中国42种自然植被的昼夜增温响应进行研究.结果表明: 研究区昼夜增温显著,且不对称性明显,夜间增温速率约为白天温度增速的1.6倍;Tmin的升高相比Tmax更利于植被生长,与Tmin呈正向作用的植被类型占比高出Tmax,且二者存在显著的空间差异;与Tmax呈正相关作用的植被中亚热带植被占85.7%,而温带高寒、山地、荒漠植被对Tmin的响应较为明显.Tmin的升高不利于高海拔地区植被生长发育,而Tmax则与之相反;植被生长发育与Tmax、Tmin的相关性大小分别为: 草原>草甸>针叶林>荒漠植被>阔叶林;草甸>荒漠植被>阔叶林>草原>针叶林.  相似文献   

16.
为了解我国北方不同草原类型中针茅根部内生真菌的群落结构及多样性变化,从新疆、甘肃、内蒙古3省(区)选择了6种不同草原类型(亚高山草甸、高山草甸、戈壁、荒漠草原、典型草原和草甸草原),进行针茅根部组织内生真菌的研究.共分离得到针茅根部内生真菌213株,根据序列的相似性(以97%为阈值),共获得51个真菌分类操作单元(OTUs),覆盖了4门7纲23科27属.在门的水平上子囊菌门真菌为绝对优势菌群,占分离真菌总数的93.4%,在各草原类型中均有分布;6种草原类型中针茅根部内生真菌的优势属差别较大,仅子囊菌门的镰孢菌属为各草原类型共有优势属,占分离真菌总数的41.3%,亚高山草甸的微结节霉属、高山草甸的Saccharicola和短梗霉属、戈壁的弯孢属和根霉属以及草甸草原的木霉属,为各草原类型中针茅根部内生真菌的优势属.高山草甸针茅根部内生真菌群落覆盖的门和属最多,Margalef丰富度指数和香农多样性指数最高,均匀度指数仅次于荒漠草原;而荒漠草原的Margalef丰富度指数最低,典型草原的多样性指数和均匀度指数最低.高山草甸和荒漠草原的内生真菌群落结构与其他草原类型之间的相似性系数都较低,分别为0.12~0.25和0.13~0.22,其他几种草原类型之间相似性相对较高,尤其是典型草原和草甸草原之间相似性系数为0.60.冗余分析(RDA)表明,海拔和纬度是影响6种草原类型中针茅根部内生真菌群落结构变化的主要环境因子.  相似文献   

17.
基于地理探测的黄土高原植被生长对气候的响应   总被引:1,自引:0,他引:1  
为探讨黄土高原不同植被类型对气候变化的响应机制,以2002-2019年黄土高原归一化植被指数(NDVI)数据为基础,利用趋势分析、Hurst指数、地理探测器等方法分析不同植被类型NDVI变化趋势及其与气象因子的关系.结果 表明:2002-2019年,黄土高原不同植被类型NDVI以增长趋势和同向中持续性为主,仅栽培植被在...  相似文献   

18.
放牧过程通过牲畜的啃食、践踏作用干扰草场环境,使草地群落的物种组成发生变化,植物种群的优势地位发生更替。结果表明,随放牧干扰强度加重,从盐湿化草甸到典型草原,群落植物种丰富度呈下降趋势。β多样性测度结果显示,盐湿化草甸和羊草杂类草草甸群落物种变化的中度干扰出现在轻牧→中牧阶段,并在整个放牧干扰进程中,表现较低的稳定性;草甸草原和典型草原群落出现在中牧→重牧阶段;而荒漠草原物种变化表现出高度的稳定性,从轻牧到过牧物种替代仅1~3种。各群落放牧干扰植物多样性的稳定性次序是:荒漠草原>典型草原≥草甸草原>盐湿化草甸.  相似文献   

19.
青藏高原多年冻土区不同草地生态系统恢复能力评价   总被引:10,自引:0,他引:10  
草地生态系统恢复能力是评价人类工程活动对青藏高原多年冻土生态系统影响的重要组分.分析了不同草地生态系统干扰带和非干扰带群落特征、植物多样性、草地初级生产力和经济类群,综合评价了青藏高原多年冻土区地上植被在受工程活动干扰后的综合恢复能力.结果表明:经过近20多年的自然恢复,青藏苔草草原、紫花针茅草原、扇穗茅草原、高山嵩草草甸、矮蒿草草甸和藏蒿草沼泽化草甸6种草地的盖度和物种组成均有一定程度的恢复,且草原群落的恢复程度好于草甸群落,但干扰群落仍低于未干扰群落;紫花针茅草原分布区物种多样性恢复好于其他草地类型分布区;干扰带由最初的地上植物生物量全部为0恢复到148.8~489.6 g·m-2,其中藏嵩草沼泽化草甸干扰带恢复最好,生物量达489.6 g·m-2;除藏嵩草恢复群落的饲用植物类群组成相对稳定外,干扰后的其他5种草地类型饲用价值降低.高寒草原生态系统的植被综合恢复能力显著高于草甸生态系统.  相似文献   

20.
What species and traits signal vegetation types along prominent environmental gradients in the Central Tien Shan and what are the corresponding diversity patterns? Vegetation was sampled at 41 sites throughout the Kyrgyz Republic using quadrats stratified throughout a 1,000-m2 sample area. Relationships among major environmental gradients, vegetation structure, and species composition were explored with nonmetric multidimensional scaling. Species distributions were examined to characterize phytogeographic patterns. Seven vegetation types ranging from desert grassland to meadow steppe were identified with cluster analysis, ordered primarily along elevation/mean annual temperature gradients. Four arid grassland types were distinguished, ranging mainly from 900 to 1,700 m elevation, and characterized by co-dominance of grasses and forbs with secondary dominance by shrubs. Annual and biennial forbs equaled perennial forbs in total importance. Grasses include C3 and C4 species. Three montane grassland types were recognized and characterized by co-dominance of perennial C3 grasses and forbs. Transition to montane steppe occurred from 1,500 to 1,900 m and is correlated with absence of C4 grasses and dominance of Festuca valesiaca. Highest diversity was found at intermediate elevations, from 1,800 to 2,600 m, in meadow steppe habitats. Forty-six percent of 580 identified species are Middle Asian endemics and remaining species primarily have distributions including Eastern Europe, the Caucasus, and western Siberia. Although grassland degradation from overgrazing has been chronic throughout the region, grasslands are widespread throughout the Kyrgyz Republic and many, particularly mid-elevation meadow steppes, retain high levels of native species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号