首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in proteolytic activity and content of calpains in striated muscles of the longtailed ground squirrel Spermophilus undulatus were studied by casein zymography and Western blotting analysis. The results testify to hyperactivation of calpain proteases in the skeletal muscles of awakened animals during the “winter” activity. The observed changes are discussed in the context of adaptation of skeletal muscles of long-tailed ground squirrels to hibernation.  相似文献   

2.
Results of the comparative study of trypsin- and chymotrypsin-like serine proteases from pyloric caeca of salmon fishes and trypsin and chymotrypsin of bulls are presented in the paper. The hydrolytic activity of salmon proteases with respect to methyl ethers of N-benzoyl-L-leucine is 2.4 times higher than that of bull chymotrypsin, but with respect to methyl esters of N-benzoyl-L-tyrosine and N-benzoyl-L-arginine the activity of salmon proteases is 6.5 and 80 times lower than that of bull chymotrypsin and trypsin. Salmon proteases in contrast to bull trypsin and chymotrypsin hydrolyze but slightly N-glutaryl-L-phenylalanine para-nitroanilide. It shown that fish proteases are not absolutely specific to synthetic substrates, which is a result of their less pronounced (than in case of bull trypsin and chymotrypsin) differences in structures of binding centres. The study of the salmon protease interaction with some immobilized ligands has confirmed the higher affinity of enzymes to reagents with two space-separated aromatic rings in their composition. It is supposed that salmon proteases interact with such reagents through two sites: hydrophobic "pockets" and probably additional binding site of the active centre. The salmon protease preparation demonstrates higher resistance to inactivating action of formaldehyde within the range of concentrations 2-16% than bull chymotrypsin does.  相似文献   

3.
In order to understand the pathogenesis of mouse muscular dystrophy, we investigated the levels of the thiobarbituric acid-reactive substances (TBARS), H2O2 and NADPH oxidase activity, which were relative to the acceleration of oxidative conditions, in tongue and hindleg skeletal muscles from C57BL/6J-dy mice. The TBARS content (702 nmol/g protein) in skeletal muscles from 2-months-old dystrophic mice was increased significantly over that (384 nmol/g protein) in muscles from age-matched normal mice. The H2O2 concentration in dystrophic skeletal muscles was 30% higher than that in normal ones. Microsomal NADPH oxidase activity which was related to the production of superoxide anions, was similar between dystrophic muscles (4.66 nmol/10 min/mg protein) and normal muscles (4.11 nmol/ 10 min/mg protein). These results indicate that oxidation is accelerated in the dystrophic muscles. However, the TBARS content in the tongues of dystrophic mice was identical to that of normal mice. This finding supports our bone-muscle growth imbalance hypothesis for the pathogenesis of mouse muscular dystrophy.  相似文献   

4.
As part of an investigation of the biochemical interactions between the salmon louse Lepeophtheirus salmonis and Atlantic salmon Salmo salar, we characterized protease activity in the skin mucus of noninfected Atlantic salmon and Atlantic salmon infected with L. salmonis and in an L. salmonis whole-body homogenate. Zymography revealed that mucus from infected salmon contained a series of low-molecular-mass (17-22 kDa) serine proteases that were not present in the mucus of noninfected salmon. Based on molecular mass, inhibition studies, and affinity chromatography, the series of proteases was identified as being trypsin-like. Similar proteases were observed in the L. salmonis homogenate and in mucus from noninfected Atlantic salmon following a 1-hr incubation with live L. salmonis. An antibody raised against Atlantic salmon trypsin failed to recognize any proteases in the mucus of noninfected salmon or infected salmon or in the L. salmonis homogenate. Collectively, these findings suggest that the trypsin-like proteases present in the mucus of infected Atlantic salmon were produced by L. salmonis, possibly to aid in feeding and evasion of host immune responses.  相似文献   

5.
Changes in the growth and protein turnover of the anterior tibialis and soleus muscles were studied in response to acute and chronic dietary restriction (50% of ad libitum intake) between 3 and 149 weeks post partum. The effect of long-term dietary restriction from weaning to senescence was to retard the growth and normal developmental of the two types of skeletal muscle. This was evident from measurements of various parameters of growth, i.e. total protein, RNA and DNA and protein/DNA-P, which were reduced by approximately 50% when compared with age-matched controls. These decreases, however, were not accompanied by a decline in the fractional rate of synthesis (%/day) or ribosomal activity (mg protein/day per mg RNAP). The slowing down of the age-related decline in muscle growth has been attributed to a reduction in RNA capacity (RNA/protein), with similar responses in the fast- and slow-twitch skeletal muscles. The initial effects of piecemeal feeding of this restricted diet on the two types of muscle were also monitored. Short term starvation effects, i.e. 24 hr after feeding a reduced ration, were measured on the protein content and RNA/protein of both the anterior tibialis and soleus muscles; both parameters were unchanged within 24 hr. In contrast, a rapid and significant decline in the ribosomal synthetic activity (mg/d per mg RNAP), and a corresponding fall in the fractional rate of synthesis, occurred within 24 hr of feeding.  相似文献   

6.
Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were approximately 50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling.  相似文献   

7.
THE formation of the endocuticle and growth of skeletal muscles which takes place in the fly after eclosion is termed the postemergence growth. An increase in volume of skeletal muscles was observed in Glossina1 and the deposition of cuticular growth layers described for some orders of both Exopterygota2 and Endopterygota3. The postemergence growth which was shown to be induced by some blood-borne factor from the head4, hitherto considered to be the tanning hormone bursicon5, is initiated by neurosecretion from the ocellar nerve of the pharate adult. Experiments have been performed which indicate that neurosecretion induces the growth of the endocuticle. The process of postemergence growth was assessed by measuring the size of the longitudinal skeletal apodemes. This begins after eclosion and is correlated with the growth in thickness of the cuticle. The enlargement of the surface of the apodemes also indicates the growth of the skeletal muscles, which spread over the newly deposited cuticle. This phenomenon is a constant feature of this species since more than 2,000 specimens were examined at different periods of the year and none were found in which postemergence growth had not occurred.  相似文献   

8.
Summary The activity of four lysosomal proteases in soleus and extensor digitorum longus muscles was studied in streptozotocin-induced diabetic rats using newly developed fluorescence histochemical and biochemical techniques. The results indicate that the content of lysosomal protease in skeletal muscle cells was decreased three weeks after the induction of diabetes. The reduction was most pronounced in the extensor digitorum longus for all the proteases tested, but in the soleus only cathepsin B and dipeptidyl peptidase II showed a decrease. Biochemical assays on total muscle homogenates and muscle extracts confirmed the histochemical observations that protease activity was significantly lower in diabetic muscles. This decrease in activity varied with the duration of diabetes beginning as early as 48 h for the soleus. In conclusion, myofibre-specific decreases in lysosomal proteases occur following diabetes.  相似文献   

9.
Changes in the molecular weight and functional properties of the C and X proteins from skeletal muscles and the C protein from the cardiac muscle of hibernating ground squirrels Citellus undulatus at different stages of the hibernation were studied. A decrease in the molecular weight of the C protein from fast fibers of skeletal muscles of hibernating ground squirrels compared with awakening and active animals was revealed. The appearance of shorter molecules of the C protein upon hibernation was accompanied by a lowering of its capacity to enhance the actin-activated ATPase activity of control myosin and by the inhibition of its Ca(2+)-sensitivity. No similar changes were observed for the skeletal X protein and the cardiac C protein. The influence of the skeletal C protein on the main functional properties of myosin allows one to draw a conclusion about its contribution to the inhibition of contractile activity of skeletal muscles upon hibernation. The physiological significance of the changes in the C protein upon hibernation is discussed in connection with similar changes in some cardiomyopathies.  相似文献   

10.
In this study, we have used two-dimensional electrophoresis, protein sequencing, immunoblotting, and immunohistochemistry to identify proteins that were differentially expressed during aging in human and rat skeletal muscles. Ubiquitin was identified. It was expressed at high levels in old fast-twitch muscles but at low levels in young fast-twitch muscles. It was also discovered that exogenous ubiquitin could suppress the growth of C2C12 cells, in vitro. The reduction in C2C12 cell growth was not attributed to an increase in apoptosis but to an inhibition in cell cycle entry. Furthermore, it was possible to induce muscles to degenerate in vivo by injecting a high dose of exogenous ubiquitin into young healthy skeletal muscles. These results suggest that hyperactivity of the ubiquitin-proteasome pathway is involved in the aging process of fast-twitch muscles. In addition, ubiquitin-dependent growth suppression in satellite cells may be associated with the poor healing potential of old skeletal muscles.  相似文献   

11.
Studies have been made on the role of the thyroid in the development of rats. In the first group of experiments, newborn rat received within a month mercazolyl which inhibits the activity of the thyroid; in animals of the second group, mercazolyl injections were combined with cold exposures which stimulated motor activity in animals. It was found that hypothyroid rats in both groups exhibit retardation of growth as compared to normal animals. However, retardation is less significant in animals of the second group, as it is indicated by smaller changes in the protein content and total mass of skeletal muscles.  相似文献   

12.
The mdx mouse has been used as an animal model for human Duchenne muscular dystrophy (DMD). Unlike DMD, skeletal muscles of mdx mice undergo successful regeneration and do not show extensive fibrosis and functional impairment. Growth factors have been proposed to be involved in muscle growth and regeneration. We compared mitogenic activity for skeletal myoblasts released after injury in mdx and control mice, using crushed muscle extract (CME) as a model system. We found that CMEs from normal and mdx mice contained similar mitogenic activities per microgram protein, and produced similar maximal levels of mitogenic stimulation. Skeletal muscles from mdx mice, however, released higher amounts of CME protein per gram of muscle weight compared to controls, possibly as a result of histological or physiological alterations in mdx muscle tissue. Adequate mitogenic activity in CME from mdx muscles may be related to successful muscle regeneration in mdx mice.  相似文献   

13.
1. To study the role of group-specific protease in enzyme degradation, alternation of its activity under various physiological conditions was examined. 2. Studies on the distribution of group-specific protease in various organs of rats showed high activity in skeletal muscle and the muscle layer of small intestine, and rather low activity in liver. The activity varied in different muscles, but red muscle tended to have higher activity than white muscle. Activity was much lower in the muscles of the stomach and colon than in those of the small intestine. 3. Group-specific protease in skeletal muscle increased under various dietary conditions (starvation, protein-free diet or high protein diet), but the activities in the muscle layer of the small intestine and liver were not greatly influenced by dietary conditions. None of the hormones tested (i.e. hydrocortisone, glucagon, insulin, growth hormone and estrogen) influenced the activity of group-specific protease in liver. 4. The level of group-specific protease in skeletal muscle was increased markedly fifteen days after denervation, with a reciprocal decrease in the level of muscle phosphorylase, which is a good substrate of the protease. 5. Liver protease activity appeared in the late suckling period. The activity in skeletal muscle was high at the time of birth and attained the adult level 3 weeks after birth. The activity in the muscle layer of the small intestine did not change after birth. Thus the mechanism for evoking these three specific proteases during development are apparently different. The activity of liver protease began to decrease approximately 12 h after partial hepatectomy and reached a minimum after about 72 h. Recovery of the protease activity was very slow and activity had not returned to the normal value 7 days after the operation. This observation seems to be consistent with the fact that there is little or no protease activity in liver in the neonatal period.  相似文献   

14.
Alkaline and myofibrillar protease activities of rectus femoris, soleus, and tibialis anterior muscles and the pooled sample of gastrocnemius and plantaris muscles were analyzed in male NMRI-mice during a running-training program of 3, 10, or 20 daily 1-h sessions. The activity of citrate synthase increased during the endurance training, reflecting the increased oxidative capacity of skeletal muscles. The activities of alkaline and myofibrillar proteases continually decreased in the course of the training program in all muscles studied. Instead, the activity of beta-glucuronidase (a marker of lysosomal hydrolases) increased in all muscles. The highest activities were observed at the beginning of the training program. Present results, together with our earlier observations, show that the type of training, running as opposed to swimming, modulates the training responses in alkaline protease activities. Further, diverse adaptations in the activities of alkaline proteases and a lysosomal hydrolase suggest difference in the function of different proteolytic systems.  相似文献   

15.
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin dependent diabetes mellitus (NIDDM) using skeletal muscles isolated from non-obese, insulin resistant type II diabetic Goto-Kakizaki (GK) rats, a well known genetic rat model for type II diabetic humans. Relative to non-diabetic control rats (WKY), insulin-stimulated insulin receptor (IR) autophosphorylation and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation were significantly inhibited in GK skeletal muscles. This may be due to increased dephosphorylation by a protein tyrosine phosphatase (PTPase). Therefore, we measured skeletal muscle total PTPase and PTPase 1B activities in the skeletal muscles isolated from control rats (WKY) and diabetic Goto-Kakizaki (GK) rats. PTPase activity was measured using a synthetic phosphopeptide, TRDIY(P)ETDY(P)Y(P)RK, as the substrate. Basal PTPase activity was 2-fold higher (P < 0.001) in skeletal muscle of GK rats when compared to WKY. Insulin infusion inhibited skeletal muscle PTPase activity in both control (26.20% of basal, P < 0.001) and GK (25.35% of basal, P < 0.001) rats. However, PTPase activity in skeletal muscle of insulin-stimulated GK rats was 200% higher than hormone-treated WKY controls (P < 0.001). Immunoprecipitation of PTPase 1B from skeletal muscle lysates and analysis of the enzyme activity in immunoprecipitates indicated that both basal and insulin-stimulated PTPase 1B activities were significantly higher (twofold, P < 0.001) in skeletal muscle of diabetic GK rats when compared to WKY controls. The increase in PTPase 1B activity in diabetic GK rats was associated with an increased expression of the PTPase 1B protein. We concluded that insulin resistance of GK rats is accompanied atleast by an abnormal regulation of PTPase 1B. Elevated PTPase 1B activity through enhanced tyrosine dephosphorylation of the insulin receptor and its substrates, may lead to impaired glucose tolerance and insulin resistance in GK rats.  相似文献   

16.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Previous work showed that estrogen replacement attenuates muscle growth in immature rats. The present study examined muscle insulin-like growth factor-1 (IGF-1) and myostatin expression to determine whether these growth regulators might be involved in mediating estrogen's effects on muscle growth. IGF-1 and myostatin message and protein expression in selected skeletal muscles from 7-week-old sham-ovariectomized (SHAM) and ovariectomized rats that received continuous estrogen (OVX/E2) or solvent vehicle (OVX/CO) from an implant for 1 week or 5 weeks was measured. In the 1-week study, ovariectomy increased IGF-1 mRNA expression in fast extensor digitorum longus and gastrocnemius muscles; the increase was reversed by estrogen replacement. A similar trend was observed in the slow soleus muscle, although the change was not statistically significant. In contrast to mRNA, muscle IGF-1 protein expression was not different between SHAM and OVX/ CO animals in the 1-week study. One week of estrogen replacement significantly decreased IGF-1 protein level in all muscles examined. Myostatin mRNA expression was not different among the 1-week treatment groups. One week of estrogen replacement significantly increased myostatin protein in the slow soleus muscle but not the fast extensor digitorum longus and gastrocnemius muscles. There was no treatment effect on IGF-1 and myostatin expression in the 5-week study; this finding suggested a transient estrogen effect or upregulation of a compensatory mechanism to counteract the estrogen effect observed at the earlier time point. This investigation is the first to explore ovariectomy and estrogen effects on skeletal muscle IGF-1 and myostatin expression. Results suggest that reduced levels of muscle IGF-1 protein may mediate estrogen's effect on growth in immature, ovariectomized rats. Increased levels of muscle myostatin protein may also have a role in mediating estrogen's effects on growth in slow but not fast skeletal muscle.  相似文献   

18.
We performed a genome‐wide association study to detect markers associated with growth traits in Atlantic salmon. The analyzed traits included body weight at tagging (BWT) and body weight at 25 months (BW25M). Genotypes of 4662 animals were imputed from the 50K SNP chip to the 200K SNP chip using fimpute software. The markers were simultaneously modeled using Bayes C to identify genomic regions associated with the traits. We identified windows explaining a maximum of 3.71% and 3.61% of the genetic variance for BWT and BW25M respectively. We found potential candidate genes located within the top ten 1‐Mb windows for BWT and BW25M. For instance, the vitronectin (VTN) gene, which has been previously reported to be associated with cell growth, was found within one of the top ten 1‐Mb windows for BWT. In addition, the WNT1‐inducible‐signaling pathway protein 3, melanocortin 2 receptor accessory protein 2, myosin light chain kinase, transforming growth factor beta receptor type 3 and myosin light chain 1 genes, which have been reported to be associated with skeletal growth in humans, growth stimulation during the larval stage in zebrafish, body weight in pigs, feed conversion in chickens and growth rate of sheep skeletal muscle respectively, were found within some of the top ten 1‐Mb windows for BW25M. These results indicate that growth traits are most likely controlled by many variants with relatively small effects in Atlantic salmon. The genomic regions associated with the traits studied here may provide further insight into the functional regions underlying growth traits in this species.  相似文献   

19.
为了探讨藏羚羊(Pantholops hodgsonii)对低氧环境的适应机制。以生活在同海拔(4 300 m)的藏绵羊(Tibetan Sheep)为对照,用分光光度法测定2种动物心肌、骨骼肌中肌红蛋白(myoglobin,Mb)含量、乳酸(lactic acid,LD)含量及乳酸脱氢酶(lactate dehydrogenase,LDH)活力。结果显示,藏羚羊心肌和骨骼肌中Mb含量明显高于藏绵羊(P0.05),但心肌和骨骼肌的Mb含量无差别(P0.05),而藏绵羊心肌Mb含量明显高于骨骼肌(P0.05);藏羚羊心肌和骨骼肌中LD含量及LDH活力明显低于藏绵羊(P0.05),且2种动物心肌中的LDH活力均明显低于其骨骼肌(P0.01)。结果表明,藏羚羊尽管生活在高寒缺氧地区,其心肌和骨骼肌细胞仍然能得到丰富的氧供应,并非处于缺氧状态,这可能是通过增加心肌和骨骼肌中Mb的含量,提高其在低氧环境获取和储存氧的能力,从而提高有氧获能水平。与之相反,藏绵羊尽管也生活在高寒缺氧地区,但其心肌和骨骼肌中Mb含量相对于藏羚羊较低,且LD含量和LDH活力较高,说明其心肌和骨骼肌细胞内氧供不如藏羚羊丰富,提示藏绵羊可能主要以糖酵解获能。我们推测这种差异可能与两种动物不同的运动习性密切相关,且认为藏羚羊较高的Mb含量可能是其适应高原缺氧条件的分子基础之一。  相似文献   

20.
Seasonal changes of the isoform composition of myosin heavy chains in skeletal muscles (m. triceps, m. longissimus dorsi, m. soleus, m. gastrocnemius, m. vastus lateralis) of hibernating ground squirrels Spermophilus undulatus were studied. Functional properties of myosin (the actin-activated ATPase activity and its Ca2+-sensitivity in vitro) were also examined. It was observed that the content of slow myosin heavy chain I isoform increased and the content of fast IIx/d isoform decreased in muscles of torpid ground squirrels and animals which are active in autumn and winter. In muscles of these animals the content of N2A-titin isoform decreased although the relative content of NT-titin isoform, observed in striated muscles of mammals in our previous experimental works, increased. Actin-activated ATPase activity and Ca2+-sensitivity of myosin isolated from skeletal muscles of torpid and interbout ground squirrels were found to reduce. The changes observed are discussed in the context of adaptation of skeletal muscles of ground squirrels to hibernation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号