首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

2.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

3.
Chum salmon populations in the Russian Far East have a complex multi-level genetic structure. A total of 53 samples (2446 fish) were grouped into five major regional clusters: the southern Kurils, eastern Sakhalin, southwestern Sakhalin, the Amur River, and a northern cluster. The northern cluster consists of chum salmon populations from a vast geographical region, including Chukotka, Kamchatka, and the continental coast of the Sea of Okhotsk. However, the degree of its genetic differentiation is low, 1.9%. In contrast, the southern population cluster exhibits much higher variation; for example, differentiation between chum salmon groups within Sakhalin Island reaches 4.6%, and the differentiation between Iturup Island and Sakhalin Island chum salmon is 7.7%. This suggests that southern populations of Asian chum salmon have a more ancient evolutionary history than northern populations. In contrast to the available data, our study indicates a great deviation of southwestern Sakhalin populations from other Sakhalin chum salmon. The Russian Far East chum salmon are genetically diverse and show statistically significant differentiation even within small geographic localities. This can be used to assign samples of unknown origins to definite local populations.  相似文献   

4.
Efremov VV 《Genetika》2001,37(3):365-372
Allozyme variation of populations of chum salmon Oncorhynchus keta from southern Russian Far East was examined. Of 55 loci screened, 31 were polymorphic. Within-population variation accounted for most of the allele diversity; FST averaged over loci was 0.052. Linkage disequilibrium was found in less than 5% of locus pairs in the chum population examined. Analysis of within- and among-population variance components of linkage disequilibrium using D-statistics (Ohta, 1982) showed that most genetic variation was distributed among populations.  相似文献   

5.
The fauna of Lepidoptera in the forest-steppe zone of southern plains of the Russian Far East is analyzed. The contribution of species with the optimal distribution in the steppe and forest-steppe zones of Eurasia into the above fauna is insignificant; eastern Asian temperate species dominate in the region. The classification analysis of lists of species from local steppe and forest-steppe faunas of both Far-Eastern humid “prairies” and southern Transbaikalian region is performed. In these regions, xerophilous species constitute the essential part of the local fauna. The necessity of revision of the present zoogeographical zoning of the Far East is substantiated.  相似文献   

6.
We examine the diversity of six microsatellite loci and partial RAG1 exon of “barabensis” and “pseudogriseus” karyoforms in Cricetulus barabensis sensu lato species complex. A total of 435 specimens from 68 localities ranging from Altai to the Far East are investigated. The results of the population structure analysis (factor analysis and NJ tree based on Nei genetic distances) support subdivision into two well-differentiated clusters corresponding to the two karyoforms. These karyoforms are also well differentiated by the level of microsatellite variability. In several “barabensis” specimens, we found microsatellite alleles that are common in “pseudogriseus” populations but are otherwise absent in “barabensis.” Most of these specimens originate from a single population in one of the zones of potential contact between karyoforms, Kharkhorin in Central Mongolia. These molecular results are consistent with previously published karyological data in suggesting that rare hybridization events between the two chromosomal races occur in nature.  相似文献   

7.
Earthworms are among the most abundant and ecologically important invasive species, and are therefore a good object for studying genetic processes in invasive populations. Aporrectodea caliginosa is one of the most widespread invasive earthworms in the temperate zone. It is believed to have dispersed from Europe to all continents except Antarctica. It is known that A. caliginosa consists of three genetic lineages, and genetic diversity is high both among and between them. We attempted to use that high genetic diversity to study A. caliginosa dispersal in the Palearctic based on a sample of 40 localities ranging from eastern Europe to the Russian Far East, and to compare our data to other studies on this species in western Europe and North America. Two genetic lineages were found in the studied sample. Only negligible decrease in genetic diversity was observed for the lineage 2 of A. caliginosa from West Europe to the Far East, suggesting multiple human-mediated introductions. In contrast, lineage 3 is abundant in West Europe and Belarus, but is absent from the East European Plain, the Urals, and the Far East. However, it is present in West Siberia, where it has greatly reduced genetic diversity, indicating long-distance dispersal accompanied by a bottleneck event. Thus, although these two lineages of A. caliginosa are morphologically indistinguishable, they have dramatic differences in their distributions and dispersal histories.  相似文献   

8.
Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates—European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far Eastern-Chinese part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No “fixed” differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000–4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European-Siberian isolate, which seems to account for closer interpopulation associations, intense genetic exchange, and “smoothing” of polymorphism within the Far Eastern population group of A. agrarius.  相似文献   

9.
Based on the data of Russian and foreign researchers, a database, consisting of 100 allozyme-coding loci examined in 288 chum salmon populations from Asia and Northern America, was constructed. Using G-test, genetic heterogeneity of Asian population samples of chum salmon was evaluated. Correlations between the frequencies of major alleles and geographic latitude of the mouths of native rivers were estimated. Using the methods of Nei and Cavalli-Sforza and Edwards, for different local chum salmon stock groups the genetic distances at the number of polymorphic enzyme loci were determined. Analysis of these distances made it possible to evaluate the patterns of genetic diversity in regional population groups from the Russian Far East, Japan, and North America. The proportions of genetic variation at each hierarchical level, identified in accordance with the geographical positions of the populations, were estimated through partitioning of variation in Asian populations into within and between-population components. It was demonstrated that intraspecific genetic structure of chum salmon corresponded geographic subdivision into regional population groups.  相似文献   

10.
To reveal phylogeographic features of sable (Martes zibellina) in the southeast part of its range, we analyzed variability of the mitochondrial DNA (mtDNA) cytochrome b gene, tRNA (Pro), tRNA (Thr) and control region (D-loop) sequences from 78 specimens in populations of the Russian Far East, northeast China, and Mongolia. Our results revealed the presence of 49 different haplotypes split into two major phylogenetic groups—clades A and B, the latter separated into two clades, B1 and B2. Comparative analysis of D-loop haplotypes in populations originating from the southeast (Russian Far East, China and Mongolia) and the west (northern Urals) portions of sable range indicated that all three mtDNA clades were present in different regional groups. However, highest diversity of clade B1 in northeast China and its nearly complete absence from the Urals suggest that the southeast sable range, being a refuge during Pleistocene glacial periods, can be considered the center of genetic diversification and possibly origin of this species. All divergence estimates fall within the Pleistocene suggesting that Quarternary glaciations played an important role in phylogeographic differentiation of sable.  相似文献   

11.
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.  相似文献   

12.
Two types of nuclear DNA markers, M13 minisatellites and RAPD, were used to examine intraspecific and interspecific variation in closely related roe deer species, Capreolus capreolus L. and C. pygargus Pall. The roe deer populations studied were highly polymorphic for minisatellite DNA markers (S = 0.12-0.36). Heterozygosities of the RAPD loci were 0.185 (Russian Far East), 0.145, 0.131, 0.088 (Cis-Ural), and 0.06 (France). They correlated with karyotypic variation of B chromosomes (r = 0.975, P < 0.02; Spearman's correlation coefficient r = 1, P = 0.1 x 10(-5)), which indicated a contribution of microchromosomes to genetic variation of the species. The genetic distance D between the closely related species C. capreolus and C. pygargus was 50 times greater than the distance between populations within a species. The estimates of heterozygosity and genetic distance between local populations of Cis-Ural and the Far East suggest their specific spatial organization within this geographical range and reveal features of their historical development.  相似文献   

13.
Bittersweet (Solanum dulcamara), a European native weed, is widespread across a variety of habitats and often occurs as a coloniser of open, disturbed, ephemeral environments or wetlands, although it is also found in mountain habitats and on forest edges. As recent studies have shown the potential utility of the species in plant breeding programs, we assembled a collection of bittersweet germplasm from natural populations found in Europe. This collection was analysed with conserved DNA‐derived polymorphism (CDDP) and intron‐targeting (IT) markers to assess genetic diversity found within and among the populations. We found that there is limited genetic variability within the collected S. dulcamara accessions, with a greater proportion of allelic variation distributed among populations and considerably greater population structure at higher regional levels. Although bittersweet is an outcrossing species, its population structure might be affected by its perennial self‐compatible nature, reducing genetic diversity within regional populations and enhancing inbreeding leading to high interpopulation or spatial differentiation. We found that populations have been separated by local selection of alleles, resulting in regional differentiation. This has been accompanied by concurrent loss of genetic diversity within populations, although this process has not affected species‐level genetic diversity. Germplasm collecting strategies should be aimed at preserving overall genetic diversity in bittersweet nightshade by expanding sampling to southern Europe and to smaller regional geographic levels in northern and central Europe.  相似文献   

14.
Allozyme variation of populations of chum salmon Oncorhynchus ketafrom southern Russian Far East was examined. Of 55 loci screened, 31 were polymorphic. Within-population variation accounted for most of the allele diversity; F STaveraged over loci was 0.052. Linkage disequilibrium was found in less than 5% of locus pairs in the chum population examined. Analysis of within- and among-population variance components of linkage disequilibrium using D-statistics (Ohta, 1982) showed that most genetic variation was distributed among populations.  相似文献   

15.
The Amur tiger, Panthera tigris altaica, is a highly endangered felid whose range and population size has been severely reduced in recent times. At present, the wild population is estimated at 490 individuals, having rebounded from the 20–30 tigers remaining following a severe bottleneck in the 1940's. The current study presents preliminary data on the patterns and levels of genetic variation in the mitochondrial DNA control region using DNA extracted from non-invasively sampled faecal material, collected throughout the entire range of P. t. altaica in the Russian Far East. Analysis of 82 scat samples representing at least 27 individuals revealed extremely low levels of CR haplotype diversity, characterized by a single widespread haplotype (96.4%) and two rare variants, each differing by a single step within the hypervariable I (2.4%) and central conserved regions (1.2%), respectively. A comparison with previous data on cytochrome bvariation in 14 captive individuals revealed a potentially greater amount of genetic variation represented in captivity relative to that found in the wild population. The extremely low levels of mitochondrial DNA variation in the wild population is discussed in light of the demographic processes that might have shaped these patterns as well as the potential bias introduced through analysis of fecal samples. These results highlight the continuing need to assess levels of genetic variation even in recovering populations that are increasing in number and underscore the important role that captive breeding programs may play in preserving remnant genetic diversity of endangered species.  相似文献   

16.
Separate populations at the edge of a species range are receiving great attention and have been shown to be often different from populations in the core area. However, it has rarely been tested whether neighboring peripheral populations are genetically and evolutionarily similar to each other, as expected for their geographical proximity and similar ecological conditions, or differ due to historical contingency. We investigated isolation and differentiation, within‐population genetic diversity and evolutionary relationships among multiple peripheral populations of a cold‐adapted terrestrial salamander, Salamandra atra, at the southern edge of the species core range. We carried out population genetic, phylogeographic, and phylogenetic analyses on various molecular markers (10 autosomal microsatellite loci, three mitochondrial loci with total length >2,100 bp, two protein‐coding nuclear genes) sampled from more than 100 individuals from 13 sites along the southern Prealps. We found at least seven isolated peripheral populations, all highly differentiated from the remaining populations and differentiated from each other at various levels. The within‐population genetic diversity was variable in the peripheral populations, but consistently lower than in the remaining populations. All peripheral populations along the southern Prealps belong to an ancient lineage that is also found in the Dinarides but did not contribute to the postglacial recolonization of the inner and northern Alps. All fully melanistic populations from the Orobian mountains to the southern Dinarides represent a single clade, to the exclusion of the two yellow‐patched populations inhabiting the Pasubio massif and the Sette Comuni plateau, which are distinguished as S. atra pasubiensis and S. atra aurorae, respectively. In conclusion, multiple populations of S. atra at the southern edge of the species core area have different levels of differentiation, different amount of within‐population genetic diversity, and different evolutionary origin. Therefore, they should be regarded as complementary conservation targets to preserve the overall genetic and evolutionary diversity of the species.  相似文献   

17.
The beluga whale (Delphinapterus leucas) has a rich and complicated vocal repertoire. However, different populations use similar and common types of signals. We studied physical features of one of these types, “vowels,” in three Russian populations: the White Sea population (European North), the Chukotka population (the Bering Sea, Chukotka), and the Okhotsk Sea population (Russian Far East) as well as in four summer aggregations of the White Sea belugas over several years in duration. The pulse repetition rate (PRR) at half of the duration of the signal was measured. We found that the PRR of “vowels” collected in the same summer aggregation during different years is stable in time but varies between locations. The degree of variation corresponds with the geographic distance between different locations. Significant differences were discovered between populations separated by thousands of kilometers, and to a lesser extent, between summer aggregations inhabiting different bays of the White Sea. The variation in PRR between the locations can be caused by the divergence of signals owing to the accumulation of random errors during transmission of these signals from generation to generation, which progressed independently in different summer aggregations and populations.  相似文献   

18.
The Far Eastern or Amur leopard (Panthera pardus orientalis) survives today as a tiny relict population of 25-40 individuals in the Russian Far East. The population descends from a 19th-century northeastern Asian subspecies whose range extended over southeastern Russia, the Korean peninsula, and northeastern China. A molecular genetic survey of nuclear microsatellite and mitochondrial DNA (mtDNA) sequence variation validates subspecies distinctiveness but also reveals a markedly reduced level of genetic variation. The amount of genetic diversity measured is the lowest among leopard subspecies and is comparable to the genetically depleted Florida panther and Asiatic lion populations. When considered in the context of nonphysiological perils that threaten small populations (e.g., chance mortality, poaching, climatic extremes, and infectious disease), the genetic and demographic data indicate a critically diminished wild population under severe threat of extinction. An established captive population of P. p. orientalis displays much higher diversity than the wild population sample, but nearly all captive individuals are derived from a history of genetic admixture with the adjacent Chinese subspecies, P. p. japonensis. The conservation management implications of potential restoration/augmentation of the wild population with immigrants from the captive population are discussed.  相似文献   

19.
The central–marginal hypothesis predicts that geographically peripheral populations should exhibit reduced genetic diversity and increased genetic differentiation than central populations due to smaller effective population size and stronger geographical isolation. We evaluated these predictions in the endangered conifer Taxus wallichiana var. mairei. Eight plastid simple sequence repeats (cpSSRs) were used to investigate plastid genetic variation in 22 populations of Taxus wallichiana var. mairei, encompassing nearly its entire distribution range. Low levels of plastid genetic variation and differentiation were detected in the populations, and the findings were attributed to low mutation rates, small population sizes, habitat fragmentation and isolation, and effective pollen or seed dispersal. Hunan and Hubei were identified as major refugia based on the number of private haplotypes and species distribution modeling. Trends in plastid genetic diversity and genetic differentiation from central to peripheral populations supported the predictions of the central–marginal hypothesis. In scenarios wherein the future climate becomes warmer, we predict that some peripheral populations will disappear and southern and southeastern regions will become significantly less habitable. Factors that include the levels of precipitation during the driest month, annual precipitation level, and annual temperature range will be decisive in shaping the future distribution of these populations. This study provides a theoretical basis for the conservation of T. wallichiana var. mairei.  相似文献   

20.
Allozyme diversity was examined in 30 populations of the maritime perennial plant Hedyotis strigulosa var. parviflora , which is distributed from subtropical islands to the central mainland of Japan. Genetic diversity within populations tended to be larger in southern island populations than in northern mainland populations. In the southern part of the distribution, the population size is generally large and populations are distributed more continuously than in the northern area, resulting in the larger effective size of southern populations as a whole. These factors play a major role in maintaining greater genetic diversity in the southern populations. By contrast, genetic diversity in the northern populations is very low, probably resulting from bottlenecks of population establishments during recolonization from refugial area to the northern areas. Geographically close populations were located near each other in the multidimensional scaling and the phenogram based on genetic distances, suggesting that gene flow among remote populations is rather limited. The pattern of genetic diversity in H. strigulosa var. parviflora is likely caused by the distribution expansion of the species; in the last glacier era, the species was restricted to the southern area; its advance to the northern area is relatively recent. Another variety endemic only to the Daito Islands, H. strigulos a var. luxurians , has lower genetic diversity than H. strigulosa var. parviflora and has genetically diverged from H. strigulosa var. parviflor a.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 679–688.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号