首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity.  相似文献   

2.
谢秀祯  林俏慧  郭勇 《广西植物》2007,27(6):903-908
以根癌农杆菌LBA4404和EHA105为供体菌株,对玫瑰茄愈伤组织进行了转化条件的研究,建立了一套玫瑰茄愈伤组织遗传转化体系。利用该转化体系获得了2个稳定表达新霉素磷酸转移酶活性的玫瑰茄转化细胞系。GUS活性组织化学检测和PCR扩增鉴定的结果表明,愈伤组织的转化率为4%。说明采用农杆菌介导法将外源基因经愈伤组织导入玫瑰茄细胞是可行的。  相似文献   

3.
Tissue culture, a traditional technique broadly used for the genetic transformation and functional verification of target genes, induces epigenetic variations in transgenic acceptors of plants. This study compared the DNA methylation patterns during the callus formation of Brassica napus induced by different concentrations of 6-BA and 2,4-D through methylation-sensitive amplification polymorphism. The highest induction rate (85%) was observed in the hypocotyls cultured with 0.1 mg/L 2,4-D and the lowest methylation rate (25.09%) was detected in the hypocotyls cultured with 1.0 mg/L 6-BA. The methylation rates of the callus cultured with 0.2 and 0.05 mg/L 2,4-D were 29.99 and 28.31%, respectively. The callus induction rates were reduced to 79 and 80%. The methylation rates of the callus induced by 2.0 and 0.5 mg/L 6-BA were 28.17 and 33.98%, respectively. The callus induction rates were reduced to 76 and 74%. The expression analysis of methyltransferase under different induction conditions agreed with methylation modifications; therefore, the effects of hormones on callus induction may be partially indicated by methylation changes in B. napus genome.  相似文献   

4.
Morphogenetic processes in immature embryos of wheat (Triticum aestivum L.) were investigated using a molecular marker for meristematic cells of cereals (proliferative antigen of meristem initial cells, PAIC). The used genetic model comprised a series of almost isogenic lines of wheat alternative by the alleles of dwarfing genes (RhtB1c, RhtB1b, and Rht14) and the original cv. Saratovskaya 29. The Rht genetic system was found to affect the level of PAIC in the wheat callus cells during callus formation and subsequent regeneration. We found differences in the level of PAIC at certain stages of culturing and a general trend of its content in the course of callus formation and secondary differentiation in the callus tissue. Possible role of PAIC as a marker of meristematic centers within the callus tissue and the prospect of its use in breeding as an additional criterion for estimation of morphogenetic ability of the newly produced lines of wheat are discussed.  相似文献   

5.
Environmental stress imposes strong natural selection on clonal populations, promoting evolutionary change in clonal structure. Environmental stress may also lead to reduction in population size, which together with clonal selection may reduce genotypic diversity of the local populations. We examined how clonal structure in wild-collected samples of two parthenogenetic populations of the freshwater ostracod Eucypris virens responded to hypersalinity and starvation, and the combination of the two stressors. We applied the stress treatments in a factorial design for one generation. When 60% of the individuals per experimental unit had died, post-experimental clonal structure was compared to that of the start of the experiment, which reflected the field conditions. We used five polymorphic allozyme loci as genotype markers. All stress treatments reduced survival compared to the control treatment. In the population “Rivalazzetto”, we observed a reduction of clonal richness in the control treatment, with the initially dominant clone maintaining dominance. This may have resulted from interclonal competition and clone-specific survival under the different laboratory conditions. Clonal richness remained high in the salinity treatment while it was reduced in the combined stress and starvation treatments. In the population “Fornovo”, clonal richness reduced in all treatments including control, while the salinity and combined stress treatment reduced clonal evenness. The clone dominating at the start of the experiment increased in frequency in all treatments, but the change in clonal structure during the experiment was more pronounced in this population. These results suggest that in some conditions an intermediate level of environmental stress may lessen the decline in genetic diversity by strong inter-clonal competition. Moreover, the variation in clonal structure among the stress treatments and distinct genetic backgrounds indicates that more general predictions of stress effects on clonal structure may be difficult.  相似文献   

6.
Genomic DNA of high quality and quantity is needed to analyze genetic diversity with AFLP.Carpobrotus plant species, like most succulents, contain high amounts of polysaccharides and polyphenols, making PCR amplification difficult. Our protocol eliminates contaminants before DNA isolation by using leaf callus as plant material. This simple and inexpensive technique gives an average DNA yield of 1800 ng/g of callus and high reproducible profiles in AFLP. Our results indicate that no genetic variability is associated with callus culture conditions. This technique is suitable for studying genomic polymorphism in succulents and other plants when classic DNA extraction procedures fail.  相似文献   

7.
A procedure has been established for Agrobacterium tumefaciens-mediated genetic transformation of Hevea brasiliensis embryogenic friable calli. Precultivation of tissues on a CaCl(2)-free maintenance medium dramatically enhanced the transient activity of the reporter gene, gusA encoding beta-glucuronidase (GUS). The increase was first noticed in highly active cells (undifferentiated or/and embryogenic), in tissues precultured for 2-8 weeks. Beyond 8 weeks of preculture, GUS activity increased again, but this time in tissues consisting of differentiated cells accumulating polyphenols. Out of five Agrobacterium strains cocultivated with CaCl(2)-free precultured tissues, only inoculation with EHA105pC2301 led to high transient GUS activity. Paromomycin proved more effective than kanamycin for the selection of transformed cells, as it inhibits the growth of non-transformed cells more radically. Five paromomycin-resistant callus lines were established. The presence of gusA and neomycin phosphotransferase ( nptII) genes in the plant genome was confirmed by DNA amplification, and by Southern hybridization. These results confirmed that A. tumefaciens is an effective system for mediating stable transformation of rubber tree calli with a low copy number of transgenes. Transgenic callus lines constitute a useful tool for studying genes of interest on a cellular level and for regenerating transgenic rubber trees.  相似文献   

8.
This study was conducted to establish a plant cell culture system for the production of medically important secondary metabolites fromXanthium strumarium. The effects of plant growth regulators including NAA, 2,4-D, kinetin, and ABA were examined in terms of callus induction, maintenance of callus and suspension cultures. It was shown that callus was induced upon treatment with NAA while embryo was induced after treatment with 2,4-D. Callus formation was further improved by treatment with ABA and NAA. The level of callusing increased by 17–29% for the seed case, cotyledon, leaf, and hypocotyl and by 96% in the case of the root. Suspension cell lines were established using calli produced from cotyledon, hypocotyl and root and cultured at 25°C under light conditions. The cells grew up to 15 g/L with NAA 2 ppm, BA 2 ppm, and ABA 1 ppm treatment. Supernatants of suspension cultures of cell lines derived from coyledon and hypocotyl produced some distinctive secondary metabolites, one of which was identified as 8-epi-tomentosin, which belongs to the xanthanolides. The amounts of 8-epi-tomentosin produced by the cotyledon-and hypocotylderived cell lines were 13.4 mg/L and 11.0 mg/L, respectively.  相似文献   

9.
Developmental variability was introduced into Withania somnifera using genetic transformation by Agrobacterium rhizogenes, with the aim of changing withasteroid production. Inoculation of W. somnifera with A. rhizogenes strains LBA 9402 and A4 produced typical transformed root lines, transformed callus lines, and rooty callus lines with simultaneous root dedifferentiation and redifferentiation. These morphologically distinct transformed lines varied in T-DNA content, growth rates, and withasteroid accumulation. All of the lines with the typical transformed root morphology contained the TL T-DNA, and 90% of them carried the TR T-DNA, irrespective of the strain used for infection. Accumulation of withaferin A was maximum (0.44% dry weight) in the transformed root line WSKHRL-1. This is the first detection of withaferin A in the roots of W. somnifera. All of the rooty callus lines induced by strain A4 contained both the TL and the TR-DNAs. In contrast, 50% of the rooty-callus lines obtained with strain LBA 9402 contained only the TR T-DNA. All the rooty callus lines accumulated both withaferin A and withanolide D. The callusing lines induced by LBA 9402 lacked the TL T-DNA genes, while all the callusing lines induced by strain A4 contained the TL DNA. Four of these callus lines produced both withaferin A (0.15–0.21% dry weight) and withanolide D (0.08–0.11% dry weight), and they grew faster than the transformed root lines. This is the first report of the presence of withasteroids in undifferentiated callus cultures of W. somnifera.  相似文献   

10.
Metal toxicity is a major abiotic stressor of plants. It has been established that changes in genetic variation occur very rapidly in plants in response to environmental stressors such as increased levels of metals. Quercus rubra (red oak) is a pioneer species in mining regions contaminated with metals in Northern Ontario (Canada). The objectives of the study were to (1) determine the level of genetic variation in Q. rubra populations from mining damaged ecosystems using RAPD marker system and (2) assess the level of gene expression of candidate genes for nickel resistance. Total gene diversity (HT) and the mean gene diversity among populations (HS) were 0.22 and 0.19, respectively. The percent of polymorphic loci within populations was high ranging from 61 % (Capreol) to 72 % (Daisy Lake) despite a high level of gene flow (2.4). The population differentiation (GST) value was low (0.17). No significant difference was found among the contaminated and reference sites for all the genetic parameters estimated. Hence, all the Q. rubra populations from the metal-contaminated and damaged ecosystems are genetically sustainable. Moreover, this study reveals that all populations were genetically closely related with genetic distance values varying from 0.17 to 0.35. A zinc finger protein of Arabidopsis thaliana (ZAT11) gene involved in nickel resistance was differentially expressed in samples analyzed. There was a 120 times higher of ZAT11 expression in samples from metal contaminated areas of Wahnapitae Dam compared to other metal contaminated and uncontaminated sites, but no association between soil metal levels and expression of ZAT11 was established.  相似文献   

11.
An in vitro continuous endosperm callus culture derived from developing endosperm of transformation-amenable maize Hi-II genotype was obtained. The endosperm callus was composed of cells that differentiated into aleurone-like and starchy endosperm-like cell types. This callus has been maintained for 4?yr. Endosperm callus cells transcribe and produce zein proteins at a level similar to developing endosperm tissue. Starchy endosperm cells of the endosperm callus displayed active starch biosynthetic activity. The dual cell physiology of this culture limited the utility of the cell line for promoter analysis and transient assays of gene expression in the current culture conditions. However, because such cell line can be readily initiated and easily maintained for a long period of time, it provides an alternative tool for analysis of transgene expression in endosperm callus derived from transgenic maize lines in Hi-II background.  相似文献   

12.
RAPD markers were used to detect DNA polymorphisms in callus tissues maintained at different auxin and cytokinin combinations. There is a higher level of genetic variablity in callus tissue maintained with the highest kinetin versus 2, 4-D concentration. Callus tissues subcultured in a 4.0 mg/L 2,4-D and 4.0 mg/L kinetin combination showed high similarity and can be recommended as more suitable sources for industrial procedures of extraction of natural products such as secondary metabolites since extraction protocols can be easily standardized using genetically uniform materials. The higher genetic diversity in callus tissues of C. peruvianus cultured at 4.0 mg/L 2,4-D and 8.0 mg/L kinetin indicates this tissue as a matrix for in vitro selection of cell lines for higher natural products production. RAPD markers are, therefore, effective tools useful for detecting DNA polymorphism in callus tissue as well as in the DNA identification of callus tissues maintained in different auxin and cytokinin combinations.  相似文献   

13.
The callus lines of Nicotiana plumbaginifolia with equal resistances to cadmium were obtained under different selective conditions, including without the inhibition of phytochelatin synthesis (the Cd-R line) and with the inhibition of a butionine sulfoximine (the Cd-Ri line). The level of phytochelatin synthesis in the Cd-R and Cd-Ri lines exceeded the control value by fivefold and twofold, respectively. Three cadmium-binding proteins with molecular masses of 41, 34, and 19 kDa were observed mainly in the control line. A common feature of both resistant lines was the expression of cadmium-binding proteins with molecular masses of 40, 34, and 19 kDa. The synthesis of relatively low-molecular cadmium-binding proteins was characteristic of the resistant lines as follows: the line Cd-R expressed the proteins with molecular masses of 12.5, 11.5, and 9 kDa, while the Cd-Ri line expressed those with molecular masses of 13 and 10 kDa. We supposed that both phytochelatins and Cd-binding proteins contribute to the resistance to cadmium in N. plumbaginifolia callus lines, and, additionally, that changes in the synthesis of low-molecular Cd-binding proteins can compensate for the lack of phytochelatins.  相似文献   

14.
The effect of anoxia on the sugarcane (Saccharum officinarum L.) cultured cells was studied in order to elaborate a technique for in vitro selection of cell lines, which would be tolerant to anaerobic stress. Inhibitory and lethal doses of anaerobic incubation were established from the state of the mitochondrial ultrastructure during the anaerobic incubation of cells either with or without exogenous glucose, as well as from the pattern of the post-anaerobic callus growth. An intact state of the mitochondrial ultrastructure and the viability of some cells in the presence of 3% glucose were shown to be maintained for at least 14 days of anaerobic incubation, while the index of post-anaerobic growth decreased by almost 50% even after 72-hour-long anaerobiosis. In the absence of exogenous glucose, a marked destruction of mitochondria and a twofold decrease in the callus growth index were observed as early as after six-hour-long anaerobic stress. A 48-hour-long incubation under these conditions resulted in the maintenance of the intact ultrastructure only in 7–10% of cells, while a 96-hour-long anaerobiosis brought about the complete degradation of the subcellular structure and cell death. A 48-hour-long anaerobiosis without exogenous glucose was chosen for selecting the anoxia-tolerant cell lines. After three cycles of selection, the anoxia tolerance of the selected cell line exceeded the respective index of the initial callus several-fold. In selected line, about 50% of cells retained viability and could resume growth even after 96-hour-long anaerobic incubation. The experimental results obtained were used to determine the possible causes of the heterogeneity of callus cells as regards their anoxia resistance.  相似文献   

15.
Fras A  Maluszynska J 《Genetica》2004,121(2):145-154
Twelve callus lines of Arabidopsis thaliana were derived from four types of explants excised from diploid plants of two ecotypes (Columbia and Wilna) and autotetraploid plants of the Wilna ecotype. Cytogenetic analysis of the chromosome variation in particular callus lines was carried out for primary culture and callus during 5 months of culture. Ploidy levels of interphase nuclei were estimated by counting the number and size of chromocentres and nuclei of interphase cells. The first polyploid cells in all callus lines were observed during callogenesis. In primary culture the ploidy level ranged between 2 and 15x (10-75 chromosomes). The frequency of polyploid cells was higher in the 5-month old callus culture, but the ploidy level was the same. In the callus lines derived from autotetraploid plants, cells with reduced chromosome number appeared quite frequently along with diploid and polyploid cells.  相似文献   

16.
N. sylvestris mutants resistant to isopropyl N-phenyl carbamate (IPC), a herbicide belonging to the phenyl carbamate series, are obtained by means of in vitro selection using gamma radiation. A concentration of 30 μM IPC was found to be the maximum concentration at which mutants of the N. sylvestris line capable of regeneration and rooting under conditions of selection pressure could be selected. IPC resistance in the mutants obtained was confirmed by a number of tests, in particular, tests that measure the capacity of leaf explants of the mutant lines to regenerate plants and the ability of their callus cells to survive in media with a selective IPC concentration, as well as by means of genetic, morphometric, cytological, and immunofluorescent analyses. The results of these studies attest to increased resistance of the mutant plants to this antimitotic substance by comparison with a control. It is shown that resistance to IPC is based on the heightened resistance of the microtubule organizing centers of the cells of these lines. It is established that the acquired resistance trait inherited in the F1 and F2 generations of the mutants is a dominant nuclear trait.  相似文献   

17.
The Indian lac insect Kerria lacca is harnessed in India for commercial production of lac, which has diversified industrial applications. Many of the geographical races of this species are under threat of extinction due to increasingly drastic local deviations in climate patterns. Thus, there is need for documentation and conservation of the lac insect biodiversity adapted especially for local climatic conditions and host species. The genetic diversity among twenty lines of commercially important Kerria spp. was analyzed using Inter-Simple Sequence Repeat (ISSR) technique. Seventeen ISSR primers produced 96.1% genetic polymorphism in the lac insect lines under study. The clustering dendrogram segregated the twenty lines into four major clusters with similarity coefficients between 0.25 and 0.81. The first three principal coordinates revealed 43.1% of the total genetic variation. The above results reveal significant genetic variability in the lines, which could be used for genetic improvement of lac insects.  相似文献   

18.
Transformed callus cultures of Nicotiana tabacum were generated in which the SAM-1 gene from Arabidopsis thaliana encoding S-adenosylmethionine synthetase (SAM-S), under the control of the 35S promoter, had been integrated. The presence of the SAM-1 gene was detected in all tested transformants and the SAM-S activity correlated with the accumulation of SAM in the tobacco callus cultures. Three distinct phenotypic classes were identified among the transgenic cell lines in relation to growth of the cells, structure of the calli, and level of SAM. Transgene silencing was observed in several cultivated transgenic calli and this phenomenon was correlated directly with a low level of SAM-1 mRNA accompanied by a decrease of the SAM-S activity. The transgenic calli overexpressing the SAM-1 gene accumulated a high SAM level. The modifications in SAM-S activity were reflected in the pattern of secondary products present in the different cell lines, thereby demonstrating that the flux through the biosynthetic pathway of a plant secondary product can be modified by means of genetic engineering.  相似文献   

19.
Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness‐related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef‐building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade‐offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals’ adaptive capacity when predicting the future of coral reefs.  相似文献   

20.
The influence of various culture conditions on growth and ginkgolides (GKA and GKB), and bilobalide formation in callus and suspension cultures ofGinkgo biloba were investigated. Callus induced from the leaf petioles exhibited distinct morphological and physiological responses. The cell biomass and ginkgolides content varied among the cell lines brownish callus lines produced high levels of ginkgolides and bilobalide in spite of poor cell growth. Among the culture media used, MS medium showed significant effect on cell growth and ginkgolides production. Low concentration of sucrose (3%) improved cell growth, while higher sucrose levels (5 and 7%) improved ginkgolides production. Cultivation of callus cultures above 28°C dramatically reduced their growth rate; however the cell lines grown at 36°C showed increased levels of bilobalide content. A 2.5-L balloon type bubble bioreactor (BTBB) was successfully developed for the cell growth and ginkgolides production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号