首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wandering Albatross Diomedea exulans chicks require 9–10 months to achieve adult body size at fledging, at which time they are also sexually size dimorphic. Because the developmental period spans the winter season, chicks must endure severe winter conditions and variability in provisioning effort by their parents. Thus chicks may adjust their rate of energy utilization to accommodate variations in provisioning, but this has not previously been studied. We followed longitudinally the changes in growth, body composition and oxygen consumption of 10 chicks from the end of the brooding period until fledging on the Crozet Islands. Body mass, culmen length and wing length were measured every 10 days and total body water (TBW) and resting metabolic rate (RMR) were measured monthly. Overall growth followed a logistic curve for all chicks, and sexual dimorphism in body mass appeared as early as the second month of measurements (males being heavier than females). Absolute TBW followed a logistic increase like that of body mass and was significantly higher in males owing to the difference in body mass. Conversely, mass-specific TBW (i.e. the proportion of body mass made up of water) did not differ significantly between male and female chicks. Absolute RMR peaked at 1.5 × adult basal metabolism in midwinter when chicks achieved maximum body mass, but decreased to adult levels by the time chicks fledged. The decrease in absolute RMR following attainment of peak mass is atypical of most seabird chicks (Procellariiformes) and may be explained partly by a reduction in size of the gut when parents reduce provisioning effort. The changes in mass-specific RMR did not differ between sexes but male chicks, being heavier, had higher absolute oxygen consumption and therefore greater energy requirements.  相似文献   

2.
The correlation between characteristics of growth and energy metabolism during the larval stage of development of the Spanish ribbed newt (Pleurodeles waltl) has been studied. During this period, its body mass is found to increase 140 times and the oxygen consumption rate, 77 times. The highest rate of specific body mass increase and oxygen consumption rate are noted in the early larval stage. Later, these characteristics decrease except for a brief period before completion of metamorphosis when the rate specific body mass increase rises. Comparison of the studied characteristics allows us to note a similar pattern in changes of the specific growth rate and the oxygen consumption rate during the premetamorphic development of the Spanish ribbed newt.  相似文献   

3.
To assess the relationship between growth rate of body mass and sex in the Japanese eel Anguilla japonica in the early life stage; the growth rates of males and females were compared under experimental conditions. The mean growth rate of females was significantly slower than that of males. To assess the relative priority of growth rate and sex, growth was delayed by restricted feeding, resulting in a significantly higher proportion of females in the delayed than in the normal growth group. These findings indicate that the mean growth rate of A. japonica is slower in females than in males in the early life stage around sex determination and differentiation under experimental rearing conditions. Moreover, growth rate probably has priority over sex determination, with slow growth rate increasing the probability of being female.  相似文献   

4.
Variation in metabolism affects energy budgets of individuals and may serve as a mechanism that influences variation at whole organism or population levels. For example, sex differences in metabolic expenditure may contribute to bioenergetic sources of sexual size dimorphism. We measured oxygen consumption rates of 48 western diamondback rattlesnakes (Crotalus atrox) from a sexually dimorphic population and tested the effects of body mass, body temperature and time of day, in three groups of snakes: males, non-reproductive females, and vitellogenic females. Metabolic rates of male and non-reproductive female C. atrox were similar to rates reported for other rattlesnakes (mass exponents ranging from 0.645–0.670). Oxygen consumption was affected by body mass, body temperature and time of day, and was approximately 1.4 times greater in vitellogenic females than in non-reproductive females. No differences were found between males and non-reproductive females. Accordingly, differences in metabolic rate apparently do not contribute directly to sexual dimorphism in this population. Nevertheless, estimates of size-dependent maintenance expenditure lead us to hypothesize that adult female body size may represent a compromise between selection for increased litter size (accomplished by increasing body size), and selection for increased reproductive frequency (accomplished by decreasing body size, and, therefore inactive maintenance expenditure); this is a mechanistic scenario suggested previously for some endotherms. Accepted: 20 May 1998  相似文献   

5.
In polygynous mammals, sex‐specific patterns of body growth are linked to divergent selection pressures on male and female body size, resulting in sexual dimorphism (SD). For males, reproductive success is generally linked to body size, hence, males should prioritise early growth. For females, reproductive success is linked to resource availability, so they may adopt a more conservative growth tactic. Using longitudinal monitoring of known‐age animals in two contrasting populations and an allometric approach to disentangle the relative contribution of structural size and physiological condition to SD, we addressed these issues in the weakly polygynous roe deer. Despite very different environmental conditions, we found remarkably similar patterns in the two populations in the mass–size allometric relationship at each life history stage, suggesting that relative allocation to structural size and physiological condition is highly constrained. SD in structural size (indexed by hind foot length) involved sex‐specific growth trajectories governed by a single mass–size allometric relationship during the juvenile stage, such that males were both bigger and heavier than females. In contrast, SD in physiological condition (indexed by the allometric relationship between body mass and hind foot length, expressed as body mass for a given body size) developed markedly during the sub‐adult stage in relation to sex differences in the timing of first reproduction. Among adults, males were heavier for a given size than females, suggesting that, relative to females, males express a capital breeder tactic, accumulating fat reserves to offset reproductive costs. By the senescent stage, SD in physiological condition had disappeared, with both sexes governed by a single allometric relationship, suggesting more rapid senescence in males than females. Individuals born into poor cohorts were generally lighter for a given size, indicating growth priority for skeletal size over physiological condition in both sexes. However, sex differences in cohort effects among sub‐adults resulted in lower size‐specific SD in poor cohorts, indicating that body condition of sub‐adult females is buffered against environmental harshness. We conclude that sex‐differences in reproductive tactics impose constraints on the ontogeny of SD in roe deer, leading to sex‐specific trajectories in structural size and physiological condition.  相似文献   

6.
Ontogenetic changes in the relationship between resting rate of oxygen consumption and wet body mass were examined at 20° C with the sea bream Pagrus major ranging from 0.00020 g (weight just after hatching) to 270 g (weight at 530 days old). There was a triphasic relationship between oxygen consumption of an individual fish M (μl min−1) and body mass W (g). During a very early stage (weight 0.00020–0.00025 g), corresponding to the pre-larval stage and with the transitional period to the post-larval stage, there was no substantial change in body mass. The mass–specific metabolic rate M/W (μl g−1 min 1) showed no clear relationship to body mass as expressed by the equation M/ W =4.86 + 1.47 D , where D is age in days. During the post-larval stage (weight 0.00031–0.005 g), M/W remained almost constant independent of body mass following the expression M = 12.5 W0 .949. During the juvenile and later stages (weight 0.005–270 g), M/ W decreased with increasing body mass following the expression M = 6.3 W 0.821 which is significantly different from the expression for the post-larval stage ( P < 0.001). Ontogenetic changes in the metabolism-body mass relationship are discussed from the viewpoint of relative growth of organs with different metabolic activities.  相似文献   

7.
Energy investment in reproduction and somatic growth was investigated for summer spawners of the Argentinean shortfin squid Illex argentinus in the southwest Atlantic Ocean. Sampled squids were examined for morphometry and intensity of feeding behavior associated with reproductive maturation. Residuals generated from length‐weight relationships were analyzed to determine patterns of energy allocation between somatic and reproductive growth. Both females and males showed similar rates of increase for eviscerated body mass and digestive gland mass relative to mantle length, but the rate of increase for total reproductive organ weight relative to mantle length in females was three times that of males. For females, condition of somatic tissues deteriorated until the mature stage, but somatic condition improved after the onset of maturity. In males, there was no correlation between somatic condition and phases of reproductive maturity. Reproductive investment decreased as sexual maturation progressed for both females and males, with the lowest investment occurring at the functionally mature stage. Residual analysis indicated that female reproductive development was at the expense of body muscle growth during the immature and maturing stages, but energy invested in reproduction after onset of maturity was probably met by food intake. However, in males both reproductive maturation and somatic growth proceeded concurrently so that energy allocated to reproduction was related to food intake throughout the process of maturation. For both males and females, there was little evidence of trade‐offs between the digestive gland and reproductive growth, as no significant correlation was found between dorsal mantle length‐digestive gland weight residuals. The role of the digestive gland as an energy reserve for gonadal growth should be reconsidered. Additionally, feeding intensity by both males and females decreased after the onset of sexual maturity, but feeding never stopped completely, even during spawning.  相似文献   

8.
The correlation between parameters of growth and energy metabolism in the example of embryonic and larval development of the ribbed newt Pleurodeles waltl has been studied. The wet body mass increases five times during this period due to water absorption by developing tissues and the yolk, and the dry mass decreases 1.18 times. The highest mass-specific growth rate and mass-specific rate of oxygen consumption of developing tissues was noticed at the 33rd stage of embryogenesis (13th–14th day of development). These indexes decreased after the hatching, but increased after larvae switched to external nutrition. Comparison of the studied parameters has identified a similar features in alteration of mass-specific growth rate, mass-specific rate of oxygen consumption, and watering of developing tissues in early development of the ribbed newt.  相似文献   

9.
The present study describes the age and growth of the leatherjacket Meuschenia scaber, a common Australasian monacanthid and valued by‐catch of the inshore bottom trawl fishery in New Zealand. Age was determined from the sagittal otoliths of 651 individuals collected between July 2014 and March 2016 in the Hauraki Gulf of New Zealand. Otolith sections revealed alternating opaque and translucent zones and edge‐type analysis demonstrated that these are deposited annually. Meuschenia scaber displayed rapid initial growth, with both males and females reaching maturity in 1–2 years and 50% of both sexes matured at 1·5 years. Maximum age differed substantially between the sexes, at 9·8 years for males and 17·1 years for females. Growth rate was similar between sexes, although males reached greater mass at age than females in the early part of the lifespan. The length–mass relationship differed significantly between the sexes, with males displaying negative allometric growth and females isometric growth. Female condition was highest in July, declined in August with the onset of spawning and showed a slight peak in January and February, immediately following the spawning season. This study substantially extends the maximum longevity recorded for monacanthids, although males had much shorter lifespans and higher mortality, than females.  相似文献   

10.
Three main hypotheses can explain the origin of the sexual size dimorphism: (1) the birth-size hypothesis, which states that birth size of males is larger than that of females; (2) the growth-rate hypothesis, which states that males grow faster than females; (3) the growth-length hypothesis, which states that males grow for a longer period of time than females. We examined the factors that may contribute to sexual size dimorphism with growth data of striped skunks Mephitis mephitis Schreber, 1776 held in captivity in Manitoba (Canada), from 7 to 72 days of age. At seven days of age, the mass of male skunks (mean = 79.7 g ± 13.9 SE, n = 37) was significantly larger than that of females (mean = 71.2 g ± 15.0 SE, n = 35) but the head and body length was not statistically different between males (mean = 110.3 mm ± 8.0 SE, n = 37) and females (mean = 95.3 mm ± 7.4 SE, n = 35). There was no difference in growth rate for mass or for length between sexes. We were not able to test for a difference in growth length between sexes. Our results suggest that mass dimorphism occurs early in life.  相似文献   

11.
Honkoop PJ 《Oecologia》2003,135(2):176-183
In this study, triploid Sydney rock oysters Saccostrea glomerata, which do not reproduce and have only limited gonadal development, were used to calculate the cost of producing and maintaining somatic tissues. The consumption of oxygen was measured and converted to units of energy expended. The consumption of oxygen of diploid oysters, in different stages of the reproductive cycle, was also measured. Knowing the costs of producing and maintaining somatic tissues (obtained from the triploid oysters), it was possible to calculate the energy demand of somatic and reproductive tissues of diploid oysters. The focus of this study was to test whether this method would work, to investigate if this method would give results in accordance with modern life-history theory and to test hypotheses about costs of reproduction in oysters. It was found that in diploid oysters, 27% of the consumed oxygen was needed for reproductive processes. It was also found that the costs of production and maintenance of reproductive tissues were on average 84% of those of somatic tissues. Costs for the production and maintenance of somatic tissues decreased over time. Costs for reproduction also decreased, but were dependent on the stage of gonadal development. If the relative mass of gametes in the gonads was large, the costs were relatively small; if the mass was relatively small, the costs were large. Differences between traits of males and females were never significant, suggesting that reproductive effort and costs were similar in males and females. It was estimated that if diploid oysters did not reproduce, they could gain 64% more somatic ash-free dry mass. Thus, in terms of growth, reproduction is an expensive activity.  相似文献   

12.
The growth of individuals is analyzed in the mass tropical species manybar goatfish Parupeneus multifasciatus from the Nha Trang Bay of the South China Sea. The relationship between the body weight and body length is determined for the females and males. Among the fishes larger 180 mm fork length (FL), the males prevail. Linear growth of the sagitta is characterized by negative allometry in relation to body length, and sagitta growth in length is faster than in width. Age of fish assessed based on the analysis of daily increments on the sagitta does not exceed three years, and the majority of individuals reach the first sexual maturity by the age of one year. The growth rate of the fish is characterized by a large individual variation.  相似文献   

13.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

14.
2017年7月—2018年5月,于西藏自治区昂仁县浪错采集268尾兰格湖裸鲤Gymnocypris chui开展种群年龄结构和生长特征研究。结果显示:雌、雄鱼体长与体质量的关系式分别为W♀=2.03×10-2L2.822(n=134,R2=0.969)、W♂=2.52×10-2L2.738(n=105,R2=0.966)。通过观察微耳石,发现样本由1~23龄组成;采用VonBertalanffy生长方程拟合雌、雄鱼体长、体质量生长方程:Lt♀=34.239[1-e-0.136(t+0.11)]、Wt♀=434.42[1-e-0.136(t+0.11)]2.822;Lt♂=32.201[1-e-0.136(t+0.287)]、Wt♂=338.8[1-e-0.136(t+0.287)]2.738;拐点年龄分别为7.52龄和7.12龄,对应体长分别为22.12cm和20.45cm,体质量分别为126.59g和97.71g。初步研究表明,兰格湖裸鲤生长慢、体型小,种群被破坏后不易恢复,亟待开展资源评估及保护工作。  相似文献   

15.
The growing mammal has many competing demands for energy, including some that are associated specifically with reproductive development. The concern of the present experiment was with the effect of domestication on energy allocation in relation to puberty. Food consumption, rate of growth, fertility onset, fat deposition and spontaneous locomotor activity were compared during peripubertal development in both sexes of two stocks of house mice, one wild and one domestic. The onset of fertility occurred much earlier in CF-1 females than it did in wild females; in sharp contrast the males of these two stocks achieved fertility at the same time. Food consumption, growth rate and final body weight were greater and locomotor activity was depressed in both sexes of the domestic stock. Proportionately less fat was deposited throughout development in CF-1 females when compared to wild females; fat deposition increased during development in CF-1 males while decreasing in wild males. Most of the energy-related differences noted here are compatible with a hypothesis that selection during domestication has focused on the need for a larger mass of the female mouse which, in turn, has been required to support a larger litter size. With specific regard to the reproductive development of the female, the data presented here are not compatible with the hypothesis that the first ovulation is regulated directly by critical amounts of body fat.  相似文献   

16.
The aim of this study was to evaluate differences in various physiological measures (growth, fecal production, feed intake, nitrogenous excretion, oxygen consumption, energy substrate used, and energy budget) among males, ovigerous females and non-ovigerous females of the freshwater prawn Macrobrachium amazonicum. This species exhibits pronounced sexual dimorphism and different male morphotypes and has the potential for use in aquaculture. Males and non-ovigerous females were studied for 30?days. Ovigerous females were studied for 10?days. Prawns were fed commercial prawn food, and all males were of the Translucent Claw (TC) morphotype. The results demonstrate physiological differences both between males and females and between females of different reproductive stages. Males had higher rates of ingestion, growth and oxygen consumption and less fecal loss than females. We postulate that in the absence of other morphotypes, TC males may exhibit increased growth rates. Males and females used protein as an energy substrate. Males channeled approximately 9% of their energy budget into growth, whereas non-ovigerous and ovigerous females channeled only 1.4?±?0.4 and 0.07?±?0.07%, respectively. Whereas males and non-ovigerous females channeled 9.0?±?9.74 and 61.8?±?3.0%, respectively, of the energy ingested into metabolism, ovigerous females channeled 97.7?±?4.7% into metabolism, likely due to the frequent beating of their pleopods, which oxygenates and cleans the eggs. As reported for marine prawns, males and non-ovigerous females of M. amazonicum lost approximately 5% of their ingested energy in exuviae. The physiological differences observed between the sexes and between females of different reproductive stages might reflect corresponding differences in patterns of activity, growth, and reproduction.  相似文献   

17.
The effects of long 'summer' (22L:2D) and short 'winter' (2L:22D) photoperiod on post-weaning growth and food consumption of the collared lemming were examined. Growth was described by Gompertz equations. After 10 weeks, lemmings maintained under short photoperiods developed white winter pelage and heavy bifid claws; body mass and estimated asymptotic mass were significantly greater than for lemmings reared under long photoperiod. Sexual dimorphism in body size was observed within treatments, males growing larger than females. There were no significant differences in the overall growth rate constant k as a result of either sex or photoperiod treatment. However, instantaneous growth rates (dW/dt) were significantly higher in 'winter' lemmings. Mass at weaning was a significant determinant of adult mass at 90 days.
Cumulative food consumption at 90 days was not significantly different between photoperiod groups, even though 'winter' lemmings gained more than double the mass of their 'summer' counterparts over the post-weaning period. Increased gut length observed for winter morphs may act as the physiological mechanism promoting greater gross energy efficiency.
The present study suggests that the overwintering strategy of the collared lemming with respect to body mass changes and energy requirements differs considerably from that of other microtines.  相似文献   

18.
We tested the hypothesis that the lack of metabolic thermal acclimation ability in tropical and subtropical amphibians is dependent on season and investigated the effects of body size, sex, time of day, and season on metabolic rates in Rana latouchii. The males were acclimated at 15 degrees, 20 degrees, and 25 degrees C, and their oxygen consumption was measured at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in all four seasons, with the exception that we did not measure oxygen consumption at 30 degrees C in winter frogs. We also acclimated the males at 30 degrees C in summer for investigating diel variation of metabolic rate. The females were acclimated at 20 degrees and 25 degrees C, and their oxygen consumption was measured at 15 degrees , 20 degrees , 25 degrees , and 30 degrees C in summer. Our results showed that metabolic rates of R. latouchii differed by time of day, season, and acclimation temperature but did not differ by sex if the results were adjusted for differences in body mass. Summer males exhibited a 26%-48% increase in metabolic rates from the lowest values in the seasons. There was a trend of increased oxygen consumption in cold-acclimated males, but it was significant only at 15 degrees and 25 degrees C in summer, autumn, and winter. These results support the hypothesis that thermal acclimation of metabolism is seasonally dependent, which has not been reported in other tropical and subtropical amphibians.  相似文献   

19.
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male‐female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Am J Phys Anthropol 153:52–60, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
We investigated the effects of mass, season, and activity on oxygen consumption of the federally threatened Ozark cavefish, Amblyopsis rosae, at Logan Cave National Wildlife Refuge, Benton County, Arkansas. We used an acclimatization protocol to measure in-situ metabolic rates. There was a significant effect of mass on the metabolic rate of Ozark cavefish and this relationship differed significantly among seasons. We observed a positive relationship between mass and oxygen consumption during summer and autumn but a negative relationship for winter and spring. There was a 1°C water temperature change between summer/autumn sampling and winter/spring sampling, but it is not likely temperature alone accounted for seasonal variation in mass-oxygen consumption relationships. Activity in the respirometer did not vary significantly among seasons and was not correlated with fish mass or time of day. Seasonal relationships between mass and oxygen consumption may therefore reflect alterations in environmental conditions (i.e. food availability, ambient dissolved oxygen), condition, changes in susceptibility to handling stress, or may reflect low numbers of fish tested. Natural history observations were made throughout the study. Four females were seen in late August with ova visible in the body cavity. On 20 June 1996 we first observed five small cavefish (approximately 10 mm TL) in a pool just upstream of the sinkhole entrance that were likely less than a month old. One large adult (55 mm TL) was seen in the same pool with the young fish for six weeks, until two small fish were displaced by a storm event. Although this does not provide a clear sign of parental care, it does suggest that cannibalism is not always the rule for this species as previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号