首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the structural organization of Herpesvirus ateles DNA shows that two types of viral DNA molecules are encapsidated in virions: (i) M-genomes, which contain 74% light sequences (L-DNA, 38% guanine plus cytosine) and 26% highly repetitive heavy sequences (H-DNA, 75% guanine plus cytosine), and (ii) defective H-genomes, which consist exclusively of repetitive H-DNA. The structure of M-genomes from H. ateles consists of an L-DNA region of about 70 x 10(6) daltons inserted between H-DNA termini of variable length. M-genomes with a shorter H-DNA region at one end of the molecule have a long stretch of H-DNA at the other end, resulting in a total molecular weight of 89.8 +/- 8.5 x 10(6). Thus it resembles the structure of M-genomes of H. saimiri. H-DNA of the two independent H. ateles isolates, strains 810 and 73, reveals different patterns after cleavage with restriction endonuclease Sma I. H-DNA of H. ateles 810 appears to consist of identical tandem repeat units with a molecular weight of 1,035,000; the H-DNA repeat unit of strain 73 is shorter (930,000 molecular weight). Corresponding DNA sequences of the two H. ateles strains (810 and 73) are completely homologous in cross-hybridizations. However, a discrete nucleotide sequence divergence between these virus strains is detected by measuring melting temperatures (T(m)) of DNA hybrid molecules. Some homology exists between H. ateles and H. saimiri DNA. Hybridization of L-DNA from H. ateles with L-DNA from H. saimiri shows about a 35% homology between the respective L-DNA sequences; the resulting heteroduplex molecules show a decrease of T(m) by 13.5 degrees C, corresponding to about a 9% mismatching in cross-hybridizing parts of L-regions. Very little homology is found between H-DNA of H. ateles and H. saimiri.  相似文献   

2.
DNA fragments derived from the left end of Herpesvirus saimiri 11 L-DNA were cloned in Escherichia coli by using vector pBR322. Deletions were introduced within a cloned 7.4-kilobase-pair sequence by using restriction endonucleases that cut once or twice within this sequence. Permissive owl monkey kidney-cultured cells were transfected with parental strain 11 viral DNA plus cloned DNA with specific sequences deleted. By screening the progeny of these transfections with a limiting-dilution spot hybridization assay, we isolated recombinant viruses containing deletions in this region. A contiguous 4.5-kilobase-pair sequence representing 4.1% of the coding capacity of the virus was found to be unnecessary for virus replication in cultured cells. These deletion mutants will allow us to test whether sequences in this region are required for the lymphoma-inducing capacity of H. saimiri. These same procedures should also allow us to introduce foreign DNA sequences into this region for studying their expression.  相似文献   

3.
The lymphoid cell line #1670 has been derived from the infiltrated spleen of a tumor-bearing marmoset monkey infected with Herpesvirus saimiri. The cells contain both types of H. saimiri DNA, unique light (L-) DNA (36% cytosine plus guanine) and repetitive heavy (H-) DNA (71% cytosine plus guanine), without producing infectious virus. Viral DNA was found to persist in these cells as nonintegrated circular DNA molecules. Closed circular superhelical viral DNA molecules were isolated by three subsequent centrifugation steps: (i) isopycnic centrifugation in CsCl, (ii) sedimentation through glycerol gradients, and (iii) equilibrium centrifugation in CsCl-ethidium bromide. The isolated circles had a molecular weight of 131.5 +/- 3.6 x 10(6). This is significantly higher than the molecular weight of linear DNA molecules isolated from purified H. saimiri virions (about 100 x 10(6)). Partial denaturation mapping of circular molecules from #1670 lymphoid cells showed uniform arrangement of H- and L-DNA sequences in all circles. All denatured molecules contained two L-DNA regions (molecular weights of 54.0 +/- 1.8 x 10(6) and 31.5 +/- 1.3 x 10(6)) and two H-DNA regions (molecular weight of 25.6 +/- 1.9 x 10(6) and 20.0 +/- 0.8 x 10(6)) of constant length. Maps of both L-regions suggested that the sequences of the shorter L-DNA region were a subset of those of the longer region. The sequences of both L-regions had the same orientation. Circular molecules from H. saimiri-transformed lymphoid cell line #1670 appeared to represent defective genomes, containing only 75% of the genetic information present in L-DNA of H. saimiri virions.  相似文献   

4.
A lymphoid T-cell line (H1591) was established by infecting peripheral blood mononuclear cells from a cotton top marmoset with Herpesvirus saimiri OMI. Analysis of these in vitro-immortalized cells revealed nonintegrated, covalently closed circular viral DNA molecules in high multiplicities with substantial rearrangements and large deletions in their L-DNA (unique) regions. One subline, designated H1591 Er, contained circular viral DNA with one stretch of H-DNA (repetitive) and one of L-DNA; the L-DNA segment consisted of a linear fusion of a 53.2-kilobase-pair piece of L-DNA (left half of L-DNA) with a 15.2-kilobase-pair L-DNA fragment from the right end of the L-DNA region. The other subline, H1591 S, contained two short regions of L-DNA, each derived from the extreme ends of virion L-DNA. Both L-DNA regions of H1591 S cells contained inverted repetitions (15.0 +/- 0.2 and 9.1 +/- 4.7 kilobase pairs). The extensive deletions of L-DNA sequences in cell line H1591 indicate that at least 73% of the genetic information in H. saimiri is not required to maintain the persistence of viral DNA and the state of transformation in lymphoid T-cells.  相似文献   

5.
Nonintegrated, circular DNA molecules of Herpesvirus saimiri and Herpesvirus ateles were found in five lymphoid cell lines originating from tumor tissues or established by in vitro immortalization of T lymphocytes. The arrangement of unique (L) and repetitive (H) DNA sequences in circular viral genomes was analyzed by partial denaturation mapping followed by visualization with an electron microscope. Three types of circular viral DNA structures were found. (i) The virus-producing cell line RLC, which is derived from an H. ateles-induced rabbit lymphoma, contains circular viral genomes which consist of a single L-DNA and a single H-DNA region, both the same length as in virion DNA. (ii) The circular viral genomes of the nonproducer cell lines H1591 and A1601, in vitro transformed by H. saimiri and H. ateles, respectively, have deletions in the unique L-DNA region and larger H-DNA regions. Cell line A1601 lacks about 8% of virion L-DNA, and H1591 cells lack about 40% of viral L-DNA information. (iii) The nonproducing H. saimiri tumor cell lines 1670 and 70N2 harbor viral genomes with two L-DNA and two H-DNA regions, respectively. Both types of circular molecules have a long and a short L-segment. The sequence arrangements of circular DNA molecules from H. saimiri-transformed cell lines were compared with those of linear virion DNA by computer alignment of partial denaturation histograms. The L-DNA deletion in cell line H1591 was found to map in the right half of the virion DNA. Comparison of the denaturation patterns of both L regions of cell lines 1670 and 70N2 identified the short L regions as subsets of the long L regions. Thus, circular viral DNA molecules of all four nonproducer cell lines represent defective genomes.  相似文献   

6.
KpnI restriction of DNAs from all anthropoid primates studied releases a conspicuous series of segments representing families of long, interspersed repetitive DNAs termed here the KpnI 1.2, 1.5, 1.8 and 1.9 kb families. Human KpnI 1.2 to 1.9 kb segments representative of these families were isolated and separately cloned in the KpnI site of a plasmid pBK5, specially constructed for this purpose. The KpnI clones did not cross-hybridize with cloned, primate alphoid sequences, suggesting that the KpnI families represent sequences separate and distinct from the alphoid DNAs. Secondary restriction analyses of cloned KpnI segments demonstrated microheterogeneity among individual members within the same KpnI family. Autoradiograms of capuchin monkey, AGM and human DNA cleaved with HaeIII, AluI or RsaI and hybridized to various cloned human KpnI sequences demonstrated a remarkable conservatism and relative simplicity in the organization of the KpnI families in the genomes of these widely divergent primates. The KpnI 1.2 kb and 1.5 kb families occur in high frequency (15%) among all plaques in two recombinant human genome libraries. Evidence is presented suggesting that the bulk of the KpnI families occur in the genome as clusters or congeries of higher molecular weight segments (greater than 2 kb) containing sequences homologous to the low molecular weight segments (1.2 to 1.9 kb).  相似文献   

7.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The leftmost 7 kilobase pairs of unique sequence L-DNA of herpesvirus saimiri was found to be highly variable among different strains as determined by restriction endonuclease analysis and blot hybridization. This region in one group of viruses (group A) showed only very weak hybridization with the DNA of two other groups. Similarly, a fragment of group B hybridized to DNA of its own group much more strongly than to group A. No homology was detected within a 1.2-kilobase-pair region between strain 11 (group A virus) and strain SMHI (group B) even under reduced stringency, and the adjacent 5.5-kilobase-pair segment of the region showed only a very weak intergroup hybridization. DNA of a third group of viruses (non-A, non-B) did not hybridize significantly with cloned fragments representing the leftmost 7-kilobase-pair region of either group A or group B. Since sequences in the highly variable region are required for the oncogenicity of the virus, these results raise interesting questions regarding the origin and function of this region of the genome.  相似文献   

10.
Molecular cloning and physical mapping of murine cytomegalovirus DNA.   总被引:32,自引:27,他引:5       下载免费PDF全文
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.  相似文献   

11.
T Kunisada  H Yamagishi 《Gene》1984,31(1-3):213-223
Covalently closed circular DNA molecules (cccDNA) from the human HeLa cell line were purified (96% pure by weight) by use of ATP-dependent deoxyribonuclease, and cloned into the HindIII site of phage lambda vector Charon 7. From the cccDNA library thus obtained, nine recombinants carrying mitochondrial DNA and 36 recombinants carrying small polydisperse circular (spc) DNA were picked at random for subsequent tests. The inserted fragments of spcDNA ranged in size from 0.6 to 7.6 kb with a mean length of 1.9 kb, a value which is the same as the average length of spcDNA. Analysis of the cloned spcDNA fragments revealed that (a) all the spcDNA clones investigated shared homologies with chromosomal DNA sequences, (b) all but one cloned DNA contained repetitive sequences, (c) the sequence organization could be roughly classified according to the reiteration frequency as greater than 10(5) (Alu family class), 10(4) to 10(5) (KpnI family class), 10(3) to 10(4) (mitochondrial DNA class) and less than 10(3) times per haploid genome, and (d) most of the repetitive sequences were dispersed in the genome, although some appeared clustered.  相似文献   

12.
Genome organization of herpesvirus aotus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
Herpesvirus aotus type 2, a virus commonly found in owl monkeys without overt disease, has a similar genome structure to the oncogenic herpesviruses of nonhuman primates (herpesvirus saimiri, herpesvirus ateles). Virion DNA of herpesvirus aotus type 2 (M-DNA) has an unique 110-kilobase-pair region of low G + C content (40.2%, L-DNA), inserted between stretches of repetitive H-DNA (68.7% G + C, about 41 kilobase pairs per molecule) that are variable in length. A minority of virions contain defective genomes that consist of repetitive H-DNA only. The H-DNA is composed of various types of repeat units that are related in sequence with each other. The two dominant types of repeats (2.3 and 2.7 kilobase pairs) were cloned and compared by restriction enzyme cleavages and partial nucleotide sequencing. They are homologous in at least 1.3 kilobase pairs. The two forms of repeat units are randomly arranged and oriented in tandem. Reassociation kinetics did not allow detection of sequence homologies between H- and L-DNA of herpesvirus aotus type 2 and the respective sequences of oncogenic primate herpesviruses.  相似文献   

13.
We constructed a physical map of the 50-kilobase-pair (kb) DNA of the temperate Rhodobacter sphaeroides bacteriophage phi RsG1, with the relative positions of the cleavage sites for the nine restriction endonucleases KpnI, HindIII, XbaI, ClaI, BclI, EcoRV, EcoRI, BglII, and BamHI indicated. Using biotinylated phi RsG1 DNA as a probe in hybridization studies, we detected homologies with virus DNA and fragments of restriction endonuclease-digested host chromosomal DNA but not with plasmid DNA. This indicates that the prophage is integrated into the host chromosome. In addition, the use of specific probes such as the 10.4-kb BglII A fragment and the 2.65-kb BamHI H fragment allowed the determination of the position of phage attachment site (attP).  相似文献   

14.
The 163-kilobase-pair (kb) plasmid pMOL28, which determines inducible resistance to nickel, cobalt, chromate, and mercury salts in its native host Alcaligenes eutrophus CH34, was transferred to a derivative of A. eutrophus H16 and subjected to cloning procedures. After Tn5 transposon mutagenesis, restriction endonuclease analysis, and DNA-DNA hybridization, two DNA fragments, a 9.5-kb KpnI fragment and a 13.5-kb HindIII fragment (HKI), were isolated. HKI contained EK1, the KpnI fragment, as a subfragment flanked on both sides by short regions. Both fragments were ligated into the suicide vector pSUP202, the broad-host-range vector pVK101, and pUC19. Both fragments restored a nickel-sensitive Tn5 mutant to full nickel and cobalt resistance. The hybrid plasmid pVK101::HKI expressed full nickel resistance in all nickel-sensitive derivatives, either pMOL28-deficient or -defective, of the native host CH34. The hybrid plasmid pVK101::HKI also conferred nickel and cobalt resistance to A. eutrophus strains H16 and JMP222, Alcaligenes hydrogenophilus, Pseudomonas putida, and Pseudomonas oleovorans, but to a lower level of resistance. In all transconjugants the metal resistances coded by pVK101::HKI were expressed constitutively rather than inducibly. The hybrid plasmid metal resistance was not expressed in Escherichia coli. DNA sequences responsible for nickel resistance in newly isolated strains showed homology to the cloned pMOL28-encoded nickel and cobalt resistance determinant.  相似文献   

15.
Viral-encoded small RNAs in herpes virus saimiri induced tumors.   总被引:11,自引:0,他引:11       下载免费PDF全文
DNA sequences from the left terminus of herpes virus saimiri L-DNA are essential for the oncogenic and transforming potential of the virus, but these sequences are not required for replication. RNA derived from 0.0 to 6.7 map units (7.4 kbp) on the herpes virus saimiri genome was studied by Northern blot hybridization and by nuclease protection analyses. Although several poly(A)-containing RNAs were detected from this region in permissively-infected monolayer cells in vitro, these RNAs could not be detected in cells taken directly from viral-induced lymphomas nor in the lymphoblastoid tumor cell line 1670. Instead, these transformed T-cells expressed four small RNAs of approximately 73, 105, 110 and 135 nt derived from this region. These small RNAs were not detected at all during the course of lytic infection of monolayer cells. Thus, synthesis of these RNAs is stringently regulated in a cell-type specific manner. Genomic coding sequences for each of these small RNAs were mapped to 0.5-1.2 kbp DNA fragments stretched over 4.3 kbp of viral genetic information. These findings together with the biological properties of mutants with deletions in this region have led us to speculate that one or more of these small RNAs play an essential role in cell growth transformation by herpes virus saimiri.  相似文献   

16.
A recombinant plasmid harboring both genomic termini of tupaia herpesvirus (THV) DNA was characterized by restriction enzyme analysis and by determination of the nucleotide sequence. A unique NotI cleavage site was found that is located approximately 19 base pairs upstream of the THV terminal junction. THV DNA fragments from virion DNA were analyzed by using the same restriction enzymes as for the recombinant plasmid. The comparative fine mapping of virion THV DNA revealed heterogeneous molecules of variable lengths with the NotI cleavage site conserved. A number of short direct and inverted repeats and palindromes were found surrounding the THV terminal joint. The THV repetitive sequences were compared with the repeats reported for the DNA termini of herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus and are discussed in respect to signals for a site-specific endonuclease required for packaging.  相似文献   

17.
18.
We reported that several DNA sequences homologous to mitochondrial DNA (mtDNA) are present in the human nuclear genome (Tsuzuki et al. (1983) Gene 25, 223-229). Detailed Southern blot analyses revealed that one of such sequences is interrupted by a repetitive sequence about 1.8 kb long, and that the insert is one member of the dispersed repeated DNA sequences of the KpnI 1.8 kb family. Nucleotide sequence analysis showed that the KpnI 1.8 kb DNA is flanked with imperfect 15-base pair (bp) direct repeats of mtDNA. This KpnI 1.8 kb DNA has an A-rich sequence at its 3'-end, and has a considerable homology with one of the published cDNA sequences homologous to one of the human KpnI families and also to one of the African green monkey KpnI families, KpnI-LS1. These structural features suggest that the KpnI 1.8 kb DNA is a movable element and is inserted within the mtDNA-like sequence by an RNA-mediated process.  相似文献   

19.
Cloning of the human cytomegalovirus genome as endonuclease XbaI fragments   总被引:41,自引:0,他引:41  
D R Thomsen  M F Stinski 《Gene》1981,16(1-3):207-216
Restriction enzyme XbaI DNA fragments that represent 99% of the sequences from the long and short unique as well as the repeat sequences of the human cytomegalovirus (CMV) genome have been cloned into bacterial plasmid pACYC184. The viral DNA sequences associated with the recombinant plasmids were analyzed by restriction mapping and by hybridization to fragments of authentic viral DNA. The relationship of the cloned viral DNA fragments to the XbaI physical map of the viral genome is demonstrated. Even though large recombinant plasmids ranging from approx. 39 to 1.8 kb were isolated, most if not all of the viral DNA fragments were stable during propagation in Escherichia coli HB101.  相似文献   

20.
Restriction endonuclease fragment patterns of mitochondrial DNA (mtDNA) in sheep were analysed with 11 enzymes. Four breeds (Merinolandschaf, Rhoenschaf, Schwarzkoepfiges Fleischschaf and Skudde) of domestic sheep and European Mouflon were examined. A restriction map with 28 cleavage sites of seven enzymes was established. KpnI and PstI do not cut ovine mtDNA. Two EcoRI fragments of Merinolandschaf, Rhoenschaf and Mouflon each were cloned and partially sequenced. Intraspecific nucleotide sequence differences within 1.101 kb ranged from 0.09 to 0.27%. Hybridization analysis with a fragment of porcine mtDNA along with sequencing data from cloned fragments was used for orientation of the restriction map along the bovine sequence. Ovine mtDNA sequences encompassing parts of the Cyt.b-, ND5-, CoIII- and ATPase6 genes were compared with the corresponding sequences of the bovine mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号