首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobic folate-binding proteins (FBPs), which are only 5-10 kDa larger than 40-kDa hydrophilic FBPs, bind significant quantities of Triton X-100 micelles and elute as apparent 160-kDa species on Sephacryl S-200 gel filtration in Triton X-100. Detergent-solubilized placental membranes release a major (greater than 95%) 40-kDa hydrophilic FBP species as well as a minor apparent 160-kDa folate binding species when similarly analyzed. We tested the hypothesis that this recovery of predominantly hydrophilic FBPs was mediated by a putative hydrophobic FBP-specific placental protease. When placenta was solubilized in the presence of increasing concentrations of EDTA, there was a progressive increase in apparent 160-kDa folate binding moieties concomitant with a decrease in 40-kDa FBPs. At 20 mM EDTA, a single apparent 160-kDa folate binding species was recovered and the 40-kDa FBPs could not be detected by radioligand binding or specific radioimmunoassay. The apparent 160-kDa species specifically bound radiolabeled folates and were specifically immunoprecipitated by rabbit anti-40-kDa FBP antiserum. On 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer to nitrocellulose and probing with anti-40-kDa FBP antiserum, the apparent 160-kDa FBPs electrophoresed as 45-kDa species. Detergent binding studies indicated that apparent 160-kDa FBPs were hydrophobic, thus accounting for the molecular weight discrepancy in gel filtration in Triton X-100 versus sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The EDTA-mediated inhibition of conversion of hydrophobic FBPs to hydrophilic FBPs by protease was reversed in a dose-dependent manner by Mg2+. If this protease is physiologically relevant, it could play an important regulatory role in folate transport by influencing the net number of hydrophobic FBPs on the cell surface.  相似文献   

2.
Two statistical methods were used for medium optimization for a hydrophilic solvent‐stable protease production by Serratia sp. SYBC H with duckweed as the nitrogen source. Orthogonal design was applied to find the significant variables, then response surface methodology (RSM), including Box–Behnken central composite experiments, was used to determine the optimal concentrations and interaction of the significant variables. Results demonstrated that duckweed powder, wheat flour, Tween 80, sodium chloride had significant effects on the solvent‐stable protease production. The interaction between duckweed and wheat flour was significant. The optimal level of the variables for the maximum protease production was duckweed 43.9 g/L, wheat flour 20 g/L, sodium chloride 0.08 M, Tween 80 1% v/v, initial pH 11.0, and inoculum size 7% v/v. The maximum protease activity reached 1922.8 U/mL in the optimized medium, with about 18.3‐fold higher than that in the unoptimized medium. Most importantly, the protease from Serratia sp. SYBC H has successfully catalyzed the specific acylation of sucrose in a two‐solvent medium consisting of pyridine and n‐hexane (1:1, v/v), and non‐specific acylation of sucrose in anhydrous DMSO. These results demonstrated that the protease from Serratia sp. SYBC H is a solvent‐stable protease and it could be an ideal biocatalyst for sugar esters syntheses in non‐aqueous media.  相似文献   

3.
Results on the kinetics of 7 alpha-hydroxysteroid dehydrogenase 7 alpha-HSDH showed that this enzyme could oxidize all bile acids having an -OH group at the C-7 position. Lineweaver-Burk plots showed Michaelis constant (Km) values of 0.83 and 0.12 mM for cholic acid and chenodeoxycholic acid, respectively. The effect of enzyme concentration on the reaction velocity showed a constant increase in the enzyme activity with increase in enzyme-protein concentration. 7 alpha-HSDH was activated by Na+, K+, Ca2+, and Mn2+ ions and by reducing agents having a thiol group (dithiothreitol, 2-mercaptoethanol). Co2+, Hg2+, Fe3+, Mg2+, Zn2+, Ba2+, and Cu2+ ions, chelating agents (potassium oxalate, heparin, EDTA) oxidizing agents (sodium perchlorate, sodium periodate, sodium persulphate), and detergents (Tween 20, Tween 40, Tween 80, Triton X-100, sodium lauryl sulphate) were inhibitory to 7 alpha-HSDH activity.  相似文献   

4.
To contribute to the understanding of ecological differentiation in speciation, we compared salinity responses of the halophytic diploid hybrid species Helianthus paradoxus and its glycophytic progenitors Helianthus annuus and Helianthus petiolaris. Plants of three populations of each species were subjected to a control (nonsaline) and three salinity treatments, including one simulating the ion composition in the habitat of H. paradoxus. Relative to the control, saline treatments led to a 17% biomass increase in H. paradoxus while its progenitors suffered 19-33% productivity reductions and only in H. paradoxus, leaf contents of potassium, calcium, and magnesium were strongly reduced. Under all treatments, H. paradoxus allocated more resources to roots, was more succulent, and had higher leaf contents of sodium (> 200 mmol l(-1) tissue water) and sulfur than its progenitor species. These results suggest that salt tolerance and thus speciation of H. paradoxus is related to sodium replacing potassium, calcium and magnesium as vacuolar osmotica. The evolutionary and genetic mechanisms likely to be involved are discussed.  相似文献   

5.
A chitinase- and protease-producing bacterium was isolated and identified as Bacillus cereus TKU006. The better condition on our tests for protease and chitinase production was found when the culture was shaken at 25 degrees C for 2 days in 25 mL of medium containing 2% shrimp shell powder (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4).7H(2)O. The molecular masses of TKU006 protease and chitinase determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis were approximately 39 and 35 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU006 protease and chitinase were 9, 50 degrees C, 3-11, 50 degrees C and 5, 40 degrees C, 3-11, 60 degrees C, respectively. TKU006 protease was inhibited completely by EDTA, indicating that the TKU006 protease was a metalloprotease. The TKU006 protease and chitinase retained 61%, 60%, 73%, and 100% and 60%, 60%, 71%, and 96% of its original activity in the presence of 2% Tween 20, 2% Tween 40, 2% Triton X-100, and 1 mM SDS, respectively. The antioxidant activity of TKU006 culture supernatant was determined through the scavenging ability on DPPH with 70% per milliliter. In conclusion, the novelties of the TKU006 protease and chitinase include its high stability to the surfactants and pH. Besides, with this method, we have shown that marine wastes can be utilized to generate a high-value-added product and have revealed its hidden potential in the production of functional foods.  相似文献   

6.
A protease that cleaves the precursor of ornithine carbamoyltransferase (EC 2.1.3.3), a mitochondrial matrix enzyme, has been partially purified from the matrix fraction of rat liver mitochondria. The protease cleaved the precursors of several other matrix proteins at apparently correct sites. The protease was inhibited by 1,10-phenanthroline and EDTA, was reactivated by excess Mn2+ or Co2+, and did not cleave the alkali-denatured precursor proteins. These and other results indicate that this protease is responsible for the processing of at least several matrix protein precursors, and that the enzyme recognizes some three-dimensional conformation of the precursors as well as the amino acid sequences around the cleavage sites.  相似文献   

7.
The biodegradation of phenanthrene by the marine strain Sphingomonas sp. 2MPII (DSMZ 11572) was enhanced by the solubilizating properties of the nonionic surfactant Tween 80. After 197 h of incubation, 85 +/- 4% of the initial amount of phenanthrene (0.4 g l-1) was biodegraded in presence of Tween 80 (0.5 g l-1) as opposed to 52 +/- 5% without this synthetic surfactant. These results confirm that the activity of the strain 2MPII is limited by the bioavailability of the polycyclic aromatic hydrocarbon (PAH) substrate in the aqueous phase. Tween 80 appears to be efficient in increasing the bioavailability of hydrophobic compounds such as PAHs.  相似文献   

8.
Due to the action of a serum protease, the two most cathodal isoinhibitors of the alpha 1-proteinase inhibitor (alpha 1-PI) are cleaved at the Gly5-Asp6 bond and lack two negative charges. In spite of this, these can bind trypsin and chymotrypsin, showing that the N-terminal pentapeptide is not indispensable for inhibition function. Pancreatic proteases also cleave a bond near the N-terminus in alpha 1-PI, resulting in a loss of two negative charges and a corresponding cathodal shift in the electrofocusing behavior of the isoinhibitors. Trypsin cleaves isoinhibitors near the N-terminus at a large inhibitor excess and unless an additional cleavage takes place, at least two of the new isoinhibitors remain active. An additional cleavage(s), most likely at a distance of 30-40 residues from the C-terminus results in a corresponding decrease of the molecular mass and a loss of inhibition function. Although the C-terminal cleavage peptide does separate from the protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it remains associated with it under conditions of polyacrylamide gel isoelectric focusing. Chymotrypsin also cleaved alpha 1-PI near the N-terminus but this could be observed only at protease excess and the modified isoinhibitors did not form complexes with chymotrypsin. The molecular polymorphism of alpha 1-PI is partly explained by the absence of the N-terminal pentapeptide from some of the isoinhibitors.  相似文献   

9.
Conformations of model peptides in membrane-mimetic environments.   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of a membrane environment on the conformational energetics of a polypeptide chain has been investigated through studies of model peptides in a variety of membrane-mimetic media. Nuclear magnetic resonance (NMR) and circular dichroism (CD) data have been obtained for the peptides in bulk hydrophobic solvents, normal micelles, and reversed micelles. Several hydrophobic peptides which are sparingly soluble in water have been solubilized in aqueous sodium dodecyl sulfate (SDS) solution. NMR and CD data indicate that the micelle-solubilized peptides experience an environment with the conformational impact of bulk methanol, and have decreased conformational freedom. The site of residence of the peptides interacting with the micelles appears to be near the surfactant head groups, in a region permeated by water, and not in the micelle core. Strongly hydrophilic peptides have been solubilized in nonpolar solvents by reversed micelles. These peptides are located in small water pools in close association with the head groups of the surfactant. NMR and CD data show that there is a conformational impact of this interfacial water region on peptide solubilizates distinct from that of bulk water.  相似文献   

10.
The interactions between the diblock copolymer S(15)E(63) and the surfactants sodium dodecyl sulfate (SDS), sodium decyl sulfate (SDeS), and sodium octyl sulfate (SOS) have been investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and isothermal titration calorimetry (ITC). The surfactants with the same headgroup differentiate in their chain length. At 20 degrees C, the block copolymer is associated into micelles with a hydrodynamic radius of 11.6 nm, which is composed of a hydrophobic styrene oxide (S) core and a water-swollen oxypolyethylene (PEO or E) corona. The different copolymer/surfactant systems have been studied at a constant copolymer concentration of 2.5 g dm(-3) and in a vast range of surfactant concentrations, from 7.5 x 10(-6) up to 0.75 M. When SDS and SDeS are added to the block copolymer solution, different regions are observed in the DLS data: at low surfactant concentrations (c < 1.0 x 10(-4) M), single surfactant molecules associate with the copolymer micelle, probably the former being solubilized in the micelle core, leading to a certain disruption of the mixed micelle due to repulsive electrostatic interactions between surfactant headgroups followed by a stabilization of the mixed micelle. At higher concentrations (1.0 x 10(-4) < c < 0.1 M), two types of copolymer-surfactant complexes coexist: one large copolymer-rich/surfactant complex and one small complex consisting of one or a few copolymer chains and rich in surfactants. At higher SDS and SDeS concentrations, complete disintegration of mixed micelles takes place. In contrast, SOS-S(15)E(63) interactions are less important up to surfactant concentrations of 0.05 M due to its higher hydrophilicity, reducing the hydrophobic interactions between surfactant alkyl chains and copolymer micelles. At concentration larger than the critical aggregation concentration (cac) of the system, 0.05 M, disruption of copolymer micelles occurs. These regions have been confirmed by transmission electron microscopy. On the other hand, the titration calorimetric data for SDS and SDeS present an endothermic increase indicating the formation of mixed copolymer-rich-surfactant micelles. From that point, important differences in the ITC plot for both surfactants are present. However, the ITC curve obtained after titration of a SOS solution in the copolymer solution is quite similar to that of its titration in water.  相似文献   

11.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with alpha2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases.  相似文献   

12.
百菌清(chlorothalonil)在水中的光化学降解   总被引:10,自引:0,他引:10  
研究了光源种类、溶液pH、水温和表面活性剂对百菌清光解的影响.结果表明,百菌清水溶液在高压汞灯、紫外灯和太阳光照射下的光解半衰期分别为22.4、82.5和123.8 min;在太阳光和高压汞灯照射下,百菌清在碱性溶液中比中性和酸性溶液中光解快;随着水温的升高,百菌清光解速率加快,水温平均每升高10 ℃,光解速率大约增大1倍.表面活性剂十二烷基磺酸钠、Tween 60和Span 20对百菌清的光解表现出显著的光敏化效应,十六烷基三甲基溴化铵对百菌清光解有强烈的光猝灭效应.  相似文献   

13.
Immunosensor systems have been developed for the rapid determination of 1-naphthol. In this work, the comparison of performance of immunosensors working in aqueous and organic media was done. Direct, indirect and capture formats were studied. Immunoreagents were immobilized on controlled pore glass (CPG), hidroxysuccinimide agarose gel or on azlactone Protein A/G supports. The Protein A/G-based sensor showed the best performance. In aqueous media, a LOD of 16.2 microg l(-1) and a DR of 33.7-586.6 microg l(-1) were achieved employing Tween 20 at a concentration ranging from 0.01 to 0.05% v/v. Maximum sensitivity was reached with 0.025% of surfactant. Binary mixtures of methanol or acetonitrile with aqueous buffer and ternary mixtures of methanol/isopropanol or ethyl acetate/methanol with the same buffer were studied as organic media. The mixture 50% MeOH-50% 20 mM sodium phosphate, pH 8, with 0.05% (v/v) Tween 20 resulted to be the best. A detection limit of 12.0 microg l(-1) and a dynamic range of 53.6-17,756.0 microg l(-1) were reached. The recycling of Protein A/G-based sensor working in this media was about 300 assays. Preconcentration factors around 250 were achieved using methanol as extracting solvent. It has been demonstrated that the technique can be successful in carrying out the analysis of low solubility in water analytes, such as 1-naphthol. The sensors developed can use higher concentrations of organic solvent (up to 50% methanol) compared to ELISA. On the other hand, the advantage of preconcentration can also be taken for the use of the same procedure as recommended for standard sample treatments.  相似文献   

14.
Selective and differential media were designed for each species of Pityrosporum; P. pachydermatis, P. ovale, and P. orbiculare in order to make feasible a quantitative cultivation. Medium for P. pachydermatis (medium A) was composed of 1% trypticase peptone (BBL), 0.5% yeast extract (BBL), 0.3% glucose, 0.2% NaCl, 1.2% KH2 PO4 (anhydrous), 1.5% agar, 0.01% ampicillin, and 0.025% cycloheximide with a pH of 5.5. Medium for P. ovale (medium B) was medium A supplemented with 0.05% sodium acetate (anhydrous), 0.2% Tween 80, and 0.025% (selective medium) or 0.075% (differential medium) sodium laurate. Medium for P. orbiculare was medium B (devoid of laurate) supplemented with 2% olive oil, 0.25% glycerol, 0.25% gall powder, 0.05% sodium palmitate, 0.05% sodium stearate, 0.05% sodium oleate and 8% (selective medium) or 10% (differential medium) sodium lactate and an increase in Tween to 1%. For isolation of Pityrosporum, specimens were suspended in 0.1% Tween 80 solution and inoculated onto agar plates of three selective media. The plates were incubated aerobically at 37 C for 8–10 days under conditions of prevention of water loss from the media. The plating efficiency of each selective medium, expressed as a ratio of cultural counts to microscopic counts was generally over 70%. Species of Pityrosporum could also be identified when we inoculated the cell suspension onto differential agar plates and incubated the preparations at 37 C for 7 days.  相似文献   

15.
Proteolytic processing of epithelial sodium channel (ENaC) subunits occurs as channels mature within the biosynthetic pathway. The proteolytic processing events of the alpha and gamma subunits are associated with channel activation. Furin cleaves the alpha subunit ectodomain at two sites, releasing an inhibitory tract and activating the channel. However, furin cleaves the gamma subunit ectodomain only once. A second distal cleavage in the gamma subunit induced by other proteases, such as prostasin and elastase, is required to release a second inhibitory tract and further activate the channel. We found that the serine protease plasmin activates ENaC in association with inducing cleavage of the gamma subunit at gammaLys194, a site distal to the furin site. A gammaK194A mutant prevented both plasmin-dependent activation of ENaC and plasmin-dependent production of a unique 70-kDa carboxyl-terminal gamma subunit cleavage fragment. Plasmin-dependent cleavage and activation of ENaC may have a role in extracellular volume expansion in human disorders associated with proteinuria, as filtered plasminogen may be processed by urokinase, released from renal tubular epithelium, to generate active plasmin.  相似文献   

16.
The addition of a surfactant agent (Tween 80) to a medium containing sulphur and a culture of Thiobacillus thiooxidans increased the attachment of bacteria to sulphur, the rate of sulphur oxidation and sulphuric acid production. This acid was used to dissolve phosphorus from calcium phosphate. The yield was higher than reported for other microorganisms although dissolution was not increased significantly by Tween addition.  相似文献   

17.
We report the purification and localization of the fadL gene product (FLP), an essential component of the long-chain fatty acid transport machinery in Escherichia coli. FLP was extracted from total membranes by differential extraction with the nonionic detergents Tween 20 and Triton X-100. This protein was further purified from a Tween 20-insoluble-Triton X-100-soluble extract by salt fractionation, gel filtration chromatography, and hydrophobic interaction chromatography. This regime results in a 95-fold purification of FLP from total membranes. The purified protein preparation was homogeneous based on silver staining and gave the characteristic behavior established for the fadL gene product in the presence of sodium dodecyl sulfate at different temperatures prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr of 33,000 when heated at 25 degrees C and Mr of 43,000 when heated at 100 degrees C) and on two-dimensional polyacrylamide gels (pI of 4.6 and a Mr of 33,000). Purified FLP was rich in hydrophobic residues accounting for approximately 45% of the total amino acid composition. To localize FLP, antisera were raised against the purified protein and were used to probe differentially fractionated membranes by Western immunoblotting. This procedure demonstrated the presence of this protein only in the outer membrane fraction of fadL+ strains. We confirmed the outer membrane localization of FLP by measuring long-chain fatty acid transport in fadL+ and fadL strains treated with EDTA to alter outer membrane permeability and in spheroplasts generated from fadL+ and fadL strains. Both EDTA-treated cells and spheroplasts transported long-chain fatty acids at essentially the same rate regardless of whether they contained a wild-type or mutant fadL gene. These data imply that FLP is a protein in the outer membrane which is specifically involved in long-chain fatty acid transport.  相似文献   

18.
White rot fungi can oxidize surfactant solubilized polycyclic aromatic hydrocarbons (PAH). The objective of this study was to evaluate the performance of immobilized white rot fungus, Phanerochaete chrysosporium, to remove surfactant Tween 80 solubilized PAH i.e. phenanthrene, pyrene and benzo(alpha)pyrene in a rotating biological contactor (RBC) reactor. Results indicated that the immobilized P. chrysosporium in the RBC reactor system in continuous operation could effectively remove the three tested PAH at specific hydraulic loading rates and concentrations tested for each individual PAH. Batch operation of RBC reactor showed that the immobilized P. chrysosporium was stable and effective for the eight successive batch treatments of PAH in solution medium i.e. PAH removal was greater than 90% after 60 h, although only low levels of ligninolytic enzyme activity were detected. The removal of phenanthrene and pyrene in solution medium has been found to be a first order reaction in batch operation. A mass balance calculation indicated that biological oxidation was the main factor for removal of benzo(alpha)pyrene i.e. 95.7% in the RBC reactor. However, for phenanthrene and pyrene, both biological oxidation (i.e. 49 and 56%, respectively) and RBC disc foam adsorption (i.e. 44 and 34%, respectively) made a significant contribution to the removal of PAH.  相似文献   

19.
The adsorption behavior of five surfactants, cetyltrimethylammonium bromide (CTAB), Triton X-100, Tween 80, sodium dodecyl sulfate (SDS), and rhamnolipid, on a Pseudomonas aeruginosa strain and the effect of temperature and ionic strength (IS) on the adsorption were studied. The change of cell surface lypohydrophilic property caused by surfactant adsorption was also investigated. The results showed that the adsorption kinetics of the surfactants on the cell followed the second-order law. CTAB adsorption was the fastest one under the experimental conditions, and it took longest for SDS adsorption to equilibrate because of electric repulsion. The adsorption of Triton X-100 and Tween 80 was characterized by short equilibration time, and rhamnolipid adsorption reached equilibrium in about 90 min. The adsorption isotherms of all the surfactants on the bacterium fitted Freundlich equation well, but the adsorption capacity and mode were variations for the surfactants as indicated by k and n parameters in the equations. The adsorption mode for all the surfactants except SDS is probably hydrophilic interaction because the adsorption totally turned the cell surface to be more hydrophobic. Neither the temperature nor the IS had significant effect on CTAB adsorption, but higher IS significantly enhanced SDS adsorption and modestly strengthened adsorption of Triton X-100, Tween 80, and rhamnolipid. Higher temperature strengthened adsorption of SDS but weakened the adsorption of Triton X-100, Tween 80, and rhamnolipid.  相似文献   

20.
B Falgout  R Chanock    C J Lai 《Journal of virology》1989,63(5):1852-1860
Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号