首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrogenic ion transport by the Na,K-ATPase was investigated in a model system of protein-containing membrane fragments adsorbed to a lipid bilayer. Transient Na+ currents were induced by photorelease of ATP from inactive caged ATP. This process was accompanied by a capacitance change of the membrane system. Two methods were applied to measure capacitances in the frequency range 1 to 6000 Hz. The frequency dependent capacitance increment, ΔC, was of sigmoidal shape and decreased at high frequencies. The midpoint frequency, f 0, depended on the ionic strength of the buffer. At 150 mm NaCl f 0 was about 200 Hz and decreased to 12 Hz at high ionic strength (1 M). At low frequencies (ff 0) the capacitance increment became frequency independent. It was, however, dependent on Na+ concentration and on the membrane potential which was generated by the charge transferred. A simple model is presented to analyze the experimental data quantitatively as a function of two parameters, the capacitance of the adsorbed membrane fragments, C P, and the potential of maximum capacitance increment, ψ 0. Below 5 mm Na+ a negative capacitance change was detected which may be assigned to electrogenic Na+ binding to cytoplasmic sites. It could be shown that the results obtained by experiments with the presented alternating current method contain the information which is determined by current-relaxation experiments with cell membranes. Received: 3 November 1997 / Revised version: 19 February 1998 / Accepted: 21 February 1998  相似文献   

2.
Summary Plasma membranes, generated in vivo by actively growing YAC lymphoma cells, were isolated from cell-free ascites fluid of lymphoma-bearing mice. Partial purification of the ascites fluid (AF) by means of ultracentrifugation resulted in the identification of two main fractions: (a) membrane fragments (AFM s ) and (b) membrane vesicles (AFM p ). Electron microscopy studies, polyacrylamide gel electrophoresis, marker enzymes, and binding capacity of radioactive lectins, have indicated that these membranes are released from the cell surface of YAC lymphoma cells, presumably by a shedding-off mechanism.In vitro studies have demonstrated that the isolated membranes can specifically inhibit the association of normal macrophages and YAC lymphoma cells. In vivo studies have shown that these membranes can immunize against YAC tumors if injected intramuscularly or subcutaneously into adult mice. The results indicate that the ascites fluid membranes bear tumor-specific antigenic determinants.Our results suggest that in vivo shedding of plasma membrane fragments or of membrane vesicles by actively growing YAC lymphoma cells may induce a self-protection of ascites tumors from host immune rejection.Abbreviations YAC= Moloney-virus-induced lymphoma cells grown in A-strain mice - AF= ascites fluid of YAC lymphoma-bearing mice - AFMs and AFMp= membrane fragments and vesicles isolated from AF - PBS= phosphate-buffered saline - Con A= Concanavalin A  相似文献   

3.
In this work, poly(acrylonitrile-co-acrylic acid) (PANCAA) was electrospun into nanofibers with a mean diameter of 180 nm. To create a biofriendly microenvironment for enzyme immobilization, collagen or protein hydrolysate from egg skin (ES) was respectively tethered on the prepared nanofibrous membranes in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiamine (EDC)/N-hydroxyl succinimide (NHS). Confocal laser scanning microscopy (CLSM) was used to verify the surface modification and protein density on the nanofibrous membranes. Lipase from Candida rugosa was then immobilized on the protein-modified nanofibrous membranes by covalent binding using glutaraldehyde (GA) as coupling agent, and on the nascent PANCAA nanofibrous membrane using EDC/NHS as coupling agent, respectively. The properties of the immobilized enzyme were assayed. It was found that different pre-tethered biomacromolecules had distinct effects on the immobilized enzyme. The activity retention of the immobilized lipase on ES hydrolysate-modified nanofibrous membrane increased from 15.0% to 20.4% compared with that on the nascent one, while it was enhanced up to more than quadrupled (activity retention of 61.7%) on the collagen-modified nanofibrous membrane. The kinetic parameter, Km and Vmax, were also determined for the free and immobilized lipases. Furthermore, the stabilities of the immobilized lipases were obviously improved compared with the free one.  相似文献   

4.
The three new dual-layer matrices (polyacrylonitrile (PAN) membranes coated with physically bound chitosan (CHI)—PANCHI-A and chemically bound chitosan—PANCHI-B and PANCHI-C) for immobilization of acetylcholinesterase (AChE) were obtained. The chemical-modified PAN membrane (PAN-NaOH + ethylenediamine (EDA)) was used as a base for the prepared dual-layer membranes. For chemical chitosan bound membrane, chitosan was tethered onto the membrane surface to form a dual-layer biomimetic membrane in the presence of glutaraldehyde (GA). The basic characteristics (amount of amino groups, hydrophilicity and transport characteristics) of the chitosan-modified membranes were investigated. The SEM analyses were shown essential morphology change in the different chitosan membranes.The relative activities and Vmax of the covalently immobilized enzyme on PANCHI-B and PANCHI-C membranes were higher than that on PANCHI-A membrane and chemical-modified membrane with NaOH + EDA. Km values for the different modified membranes are lower for the chitosan-treated membranes. The pH and temperature optimum of immobilized enzyme were determined. The bound enzymes on PANCHI-B and PANCHI-C have higher thermal and storage stability in comparison with AChE on PANCHI-A membrane and free enzyme.  相似文献   

5.
Poly(2-hydroxyethylmethacrylate) (pHEMA) based flat sheet membrane was prepared by UV-initiated photopolymerization technique. The membrane was then grafted with -histidine. Catalase immobilization onto the membrane from aqueous solutions containing different amounts of catalase at different pH was investigated in a batch system. The maximum catalase immobilization capacity of the pHEMA–histidine membrane was 86 μg cm−2. The activity yield was decreased with the increase of the enzyme loading. It was observed that there was a significant change between Vmax value of the free catalase and Vmax value of the adsorbed catalase on the pHEMA–histidine membrane. The Km value of the immobilized enzyme was higher 1.5 times than that of the free enzyme. Optimum operational temperature was 5°C higher than that of the free enzyme and was significantly broader. It was observed that enzyme could be repeatedly adsorbed and desorbed without loss of adsorption capacity or enzyme activity.  相似文献   

6.
Effects of extraction of the H-subunit from Rhodobacter sphaeroides photosynthetic reaction centers (RC) on the characteristics of the photoinduced conformational transition associated with electron transfer between photoactive bacterio-chlorophyll and primary quinone acceptor were studied. Extraction of the H-subunit (i.e., the subunit that is not directly bound to electron transfer cofactors) was found to have a significant effect on the dynamic properties of the protein–pigment complex of the RC, the effect being mediated by modification of parameters of the relaxation processes associated with charge separation.  相似文献   

7.
Summary Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni was immobilized on polypyrrole-coated track-etch and microporous membranes. On the track-etch membrane, 3.4 to 4.8 × 10–3 Units of enzyme/cm2 was immobilized whilst on the microporous membrane 0.05 U/cm2 was immobilized. The track-etch membrane was then used in electrochemical studies using ferricyanide as a redox mediator giving a maximum catalytic current of 0.022 mA/cm2 membrane with 1-pentanol as the substrate. The kinetic parameters (Km and Vmax) of the immobilized enzyme are of the same order of magnitude as those of the free enzyme.  相似文献   

8.
During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm ± 8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.  相似文献   

9.
Peroxygenase is an enzyme that can convert a double bond to an epoxide. Peroxygenase activity from oat (Avena sativa) seeds was immobilized on synthetic membranes. The immobilized preparation was tested on oleic acid in aqueous and heptane media. The order of oxidant activity was tert-butyl hydroperoxide>cumene hydroperoxide>H2O2–Urea-H2O2. The immobilized preparation could be reused. Oleic acid was a preferred substrate compared to its trans analogue, elaidic acid.  相似文献   

10.
  • 1 Preliminary experiments showed that Triton X-100 at low concentrations (appr. 0.01%) induces reversible changes in some photosynthetic reactions in Phaeodactylum cells without influencing their absorption spectrum; presumably membrane permeability is effects. Although DC PIP can pass through the cell membrane in the presence of 0.01% Triton X-100, only a very low PS I activity, measured as MV photoreduction by DCPIP-ascorbate, is observed with whole cells.
  • 2 MV photoreduction sensitized by membrane fragments isolated from Phaetdactylum, Euglena, Porphyridium and Synechococcus after French Press treatment is much higher with Phaeodactylum than with the other organisms. Spinach shroma membrane fragments show higher photosensitizing activity than grana fragments.
  • 3 MV photoreduction in the above mentioned experiments is not influenced by DCMU (2 × 10?6M) or sodium azide (0.01–0.05 M); KCN (4 × 10?3M) has an inhibiting effect only with the blue-green alga Synechococcus. The reaction mechanism of chlorophyll-sensitized MV photoreduction is discussed.
  • 4 Chlorophyll in an aqueous medium containing Triton X-100 (JsO.01%) sensitizes the photoreduction of MV by DCPIP ascorbate. A similar reaction is observed with chlorophyll combined with solubilized Phaeocdactylum chlorophyllase: in the latter case the presence of both MgCl2 and DTT is required.
  • 5 MV-photoreduction is concluded to be a very unreliable procedure for determining PS I activity in membranes if these membranes have been prepared in (the presence of detergents.
  • 6 The results support the hypothesis that (prochlorophyllase is a PS I protein.
  • 7 The capacity of PS I to reduce MV in vivo is discussed.
  相似文献   

11.
This study deals with the specific interaction between the lectin peanut agglutinin (PNA) from Arachis hypogaea and the ganglioside GM1 which was incorporated in a solid supported lipid bilayer immobilized on a gold electrode placed on top of an AT-cut quartz crystal. Bilayer formation was reached by self-assembly processes. The first monolayer consists of octanethiol attached to the gold surface via chemisorption and the second monolayer was immobilized by vesicle fusion on the preformed hydrophobic surface. We managed to keep unspecific binding to a minimum by using a phospholipid matrix consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Lectin binding to ganglioside GM1 containing membranes was determined by a decrease of the resonant frequency of the quartz crystal. The minimum amount of receptor within the membrane which is necessary to obtain a complete protein monolayer was found to be less than 2 mol%. The adsorption isotherm of PNA to GM1 was recorded and analyzed to be of Langmuir type, exhibiting a binding constant of PNA to the ganglioside of 8.3 ⋅ 105 M–1. The good agreement of the calculated Langmuir adsorption isotherm with the obtained experimental data implies that protein multilayers are not formed and that interactions between the adsorbents can be neglected. Furthermore, the association constants of two different saccharides, β-Galp-(1 → 3)-GalNAc exhibiting a strong binding to PNA in solution, and β-D-galactose with a much lower affinity were estimated by determining the equilibrium concentration of PNA attached to the surface. Moreover we were able to remove the attached lectin monolayer by digestion of the protein with pronase causing an increase in the resonant frequency which almost reversed the frequency shift to lower frequencies during adsorption. An even more complex system was built up by the use of digoxigenin-labeled PNA which also binds to the solid supported membrane containing the receptor GM1. The immobilized lectin was recognized by anti-digoxigenin-Fab-fragments, which is measurable by a further decrease of the resonant frequency. For all binding processes we found larger frequency shifts for a complete protein monolayer than predicted by Sauerbrey's equation, clearly showing that in addition to mass loading viscoelastic changes occur at the lipid-protein interface. Received: 22 July 1996 / Accepted: 12 September 1996  相似文献   

12.
Recovery of uranium by immobilized microorganisms   总被引:2,自引:0,他引:2  
Summary Some attempts were made to recover uranium from sea and fresh water using immobilized Streptomyces viridochromogenes and Chlorella regularis cells. The cells immobilized in polyacrylamide gel have the most favorable features for uranium recovery; high adsorption ability, good mechanical properties, and applicability in a column system. The adsorption of uranium by the immobilized cells is not affected by the pH values between 4 and 9. These results show that uranium adsorption becomes independent of pH after immobilization. The amounts of uranium adsorbed by the immobilized cells increased linearly with temperature, suggesting that the adsorption of uranium by the immobilized cells is an endothermic reaction. The immobilized cells can recover uranium almost quantitatively from both fresh and sea water containing uranium, and almost all uranium adsorbed is desorbed with a solution of Na2CO3. Thus the immobilized cells of Streptomyces and Chlorella can be used repeatedly in adsorption-desorption process.Studies on the Accumulation of Heavy Metal Elements in Biological Systems. XXI  相似文献   

13.
The photosynthetic apparatus, especially the electron transport chain imbedded in the thylakoid membrane, is one of the main targets of cold and heat stress in plants. Prompt and delayed fluorescence emission originating from photosystem II have been used, most often separately, to monitor the changes induced in the photosynthetic membranes during progressive warming or cooling of a leaf sample. Thermofluorescence of F 0 and F M informs on the effects of heat on the chlorophyll antennae and the photochemical centers, thermoluminescence on the stabilization and movements of charges and Delayed Light Emission on the permeability of the thylakoid membranes to protons and ions. Considered together and operated simultaneously, these techniques constitute a powerful tool to characterize the effect of thermal stress on intact photosynthetic systems and to understand the mechanisms of constitutive or induced tolerance to temperature stresses.  相似文献   

14.
《Chirality》2017,29(6):315-324
Chiral solid membranes of cellulose, sodium alginate, and hydroxypropyl‐β‐cyclodextrin were prepared for chiral dialysis separations. After optimizing the membrane material concentrations, the membrane preparation conditions and the feed concentrations, enantiomeric excesses of 89.1%, 42.6%, and 59.1% were obtained for mandelic acid on the cellulose membrane, p ‐hydroxy phenylglycine on the sodium alginate membrane, and p ‐hydroxy phenylglycine on the hydroxypropyl‐β‐cyclodextrin membrane, respectively. To study the optical resolution mechanism, chiral discrimination by membrane adsorption, solid phase extraction, membrane chromatography, high‐pressure liquid chromatography ultrafiltration were performed. All of the experimental results showed that the first adsorbed enantiomer was not the enantiomer that first permeated the membrane. The crystal structures of mandelic acid and p ‐hydroxy phenylglycine are the racematic compounds. We suggest that the chiral separation mechanism of the solid membrane is “adsorption – association – diffusion,” which is able to explain the optical resolution of the enantioselective membrane. This is also the first report in which solid membranes of sodium alginate and hydroxypropyl‐β‐cyclodextrin were used in the chiral separation of p ‐hydroxy phenylglycine.  相似文献   

15.
A mutant of Arabidopsis thaliana, deficient in activity of the chloroplast n-6 desaturase, accumulated high levels of C16:1 and C18:1 lipids and had correspondingly reduced levels of polyunsaturated lipids. The altered lipid composition of the mutant had pronounced effects on chloroplast ultrastructure, thylakoid membrane protein and chlorophyll content, electron transport rates, and the thermal stability of the photosynthetic membranes. The change in chloroplast ultrastructure was due to a 48% decrease in the amount of appressed membranes that was not compensated for by an increased amount of nonappressed membrane. This resulted in a net loss of 36% of the thylakoid membrane per chloroplast and a corresponding reduction in chlorophyll and protein content. Electrophoretic analysis of the chlorophyll-protein complexes further revealed a small decrease in the amount of light-harvesting complex. Relative levels of whole chain and protosystem II electron transport rates were also reduced in the mutant. In addition, the mutation resulted in enhanced thermal stability of photosynthetic electron transport. These observations suggest a central role of polyunsaturated lipids in determining chloroplast structure and maintaining normal photosynthetic function and demonstrate that lipid unsaturation directly affects the thermal stability of photosynthetic membranes.  相似文献   

16.
The ultrastructure of cells of Acidiphilium rubrum, which is an acidophilic aerobic photosynthetic bacterium containing zinc-complexed bacteriochlorophyll a, was studied by electron microscopy with the rapid substitution technique. Thin-section electron microscopy indicated that any type of internal photosynthetic membranes was not present in this organism despite a relatively high content of the photopigment. The majority of cells had poly-β-hydroxybutyrate granules and electron-dense spherical bodies identified as being polyphosphate granules. When the organism was grown chemotrophically with 0.1% FeSO4, it produced another group of electron-dense granules that were associated with the inner part of the cytoplasmic membrane. An energy-dispersive X-ray analysis showed that these membrane-bound, electron-dense granules contained iron. Received: 24 November 1999 / Accepted: 5 January 2000  相似文献   

17.
Mitochondrial creatine kinase and its proteinase K nicked-derivative interaction with liposomes induced slight secondary structure changes evidenced by infrared spectra. In nondenaturing conditions, the N-terminal (K1) and the C-terminal (K2) fragments remained associated with each other and bound to liposomes. When the two fragments were separated by denaturation, K2 was soluble, whereas most of K1 was adsorbed onto liposomes. The three-dimensional structure of uncleaved mtCK suggests that the C-terminal moiety, which contains positively charged surface residues, interacted with membranes. After denaturation and renaturation of the nicked enzyme, both peptides did not refold properly and did not reassociate with each other. The misfolded K1 fragment bound to the membrane through a stretch of positive residues, which were buried in the native enzyme. The lack of binding of the ill-folded K2 peptide could be related to the disruption of the optimal disposition of its positive charges, responsible for the correct interaction of native mtCK with membrane.  相似文献   

18.
19.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

20.
We have identified and characterized the protease-resistant SecA fragments (X. Chen, H. Xu, and P. C. Tai, J. Biol. Chem. 271:29698–29706, 1996) through immunodetection with region-specific antibodies, chemical extraction, and sequencing analysis. The 66-, 36-, and 27-kDa proteolytic fragments in the membranes all start at Met1, whereas the 48-kDa fragment starts at Glu361. The overlapping of the sequences of the 66- and 48-kDa fragments indicates that they are derived from different SecA molecules. These two fragments were generated differently in response to ATP hydrolysis and protein translocation. Furthermore, the presence of membrane is required for the generation of the 48-kDa fragment but not for that of the 66-kDa fragment. These data suggest that there are two different integral forms of SecA in the membrane: SecAS and SecAM. The combination of these two forms of SecA has several membrane-interacting domains. Both forms of SecA are integrated in the membrane, since both the 48- and 66-kDa fragments could be derived from urea- or Na2CO3-washed membranes. Moreover, all fragments are resistant to extraction with a high concentration of salt or with heparin, but the membrane-specific 48-kDa SecA domain is more sensitive to Na2CO3 or urea extraction. This suggests that this domain may interact with other membrane proteins in an aqueous microenvironment and therefore may form a part of the protein-conducting channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号