首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liang L  Sun R  Fei J  Wu S  Liu X  Dai K  Yao N 《Bioresource technology》2008,99(15):7238-7246
A fixed-bed experimental reactor was employed to reveal the combustion characteristics in simulated municipal solid waste (MSW) beds. Temperature distributions, ignition front velocity, bed weight were measured during combustion and gas analysis was also performed for O2, CO2, CO, CxHy, NO, HCN. The moisture content in MSW was varied. For higher moisture content, the drying of material was finished much later and the ignition front temperatures, ignition front velocity and overall burning rate were found to drop. The average concentration of CO and CO2 from the bed was inversely proportional to the moisture level, and the highest concentrations of CO and CxHy were observed at middle level of investigated fuel moisture content. Measurements showed that NO and HCN emitted from the bed and reached the peaks simultaneously with the volatile matters, and the conversion ratio of fuel nitrogen to NO and average concentration of NO decreased with increasing moisture content.  相似文献   

2.
Ren Q  Zhao C  Duan L  Chen X 《Bioresource technology》2011,102(14):7211-7217
NO formation during combustion of four typical kinds of straw (wheat straw, rice straw, cotton stalk and corn stalk) which belong to soft straw and hard straw was studied in a tubular quartz fixed bed reactor under conditions relevant to grate boiler combustion. Regarding the real situation in biomass fired power plants in China, NO formation from blended straw combustion was also investigated. Nitrogen transfer during blended straw pyrolysis was performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results show that NO conversion for the four straws during combustion is distinctive. Over 70% fuel-N converts into NO for cotton stalk, while only 37% for wheat straw under the same condition. When wheat straw and cotton stalk were mixed, N-NO conversion increases. The limestone addition promotes NO emission during cotton stalk combustion. The presence of SO2 in atmosphere suppresses NO formation from straw combustion.  相似文献   

3.
Azotobacter vinelandii was cultured on technical lignin, derived from Kraft pulping processes, for biofertilizer production in solid-state fermentation. The effects of the ratio of technical lignin to corn straw, initial water content, and material bed depth on the microorganisms were studied in detail. At 30 degrees C, technical lignin to corn straw at the ratio of 1:0.75, the bed depth of 5 cm, and 67% moisture content, A. vinelandii was grown and reached 4.2 x 10(10) cfu g(-1) dry rot after 36 h.  相似文献   

4.
This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions.  相似文献   

5.
Rice straw and corn stalks were used as fermentation substrate for the evaluation of cellulases activity secreted by different organisms. The substrates were pretreated with alkaline hydrogen peroxide (AHP) for 6 h at 30 and 60 °C. From the fermentation studies, rice straw and corn stalks substrates showed the highest cellulases activity after 96 h at 60 °C of pre-treatment.  相似文献   

6.
Co-combustion of eucalyptus bark (as shredded fuel) and rubberwood sawdust was conducted in a swirling fluidized-bed combustor using a 22-vane axial flow swirler. During the co-firing tests, the fuel blend feed rate was maintained at about 60 kg/h, while the mass/energy fraction of the blended fuels was variable. Excess air supply ranged from 20% to 80% for each fuel option via variation of primary air, while secondary air was injected tangentially into the bed splash zone at a constant flowrate. For comparison, tests with pure rubberwood sawdust at similar operating conditions were performed as well. Temperature and concentrations of O2, CO and NO were measured along radial and axial directions in the combustor as well as at stack. For all fuel firing options, the radial and axial temperature profiles in the reactor were found to be weakly dependent on operating conditions. However, the gas concentration profiles exhibited apparent effects of fuel properties, excess air and secondary air injection, which resulted in variable emission characteristics of the combustor. For the sawdust energy fraction in the fuel blend of about 0.85, CO and NO emissions can be controlled at acceptable levels (both complying with the national emission limits) by maintaining excess air between 50% and 55%. Under such conditions, the co-combustion of high-moisture eucalyptus bark and rubberwood sawdust in the proposed combustor occurs in a stable regime with high, 99.6%, combustion efficiency.  相似文献   

7.
Gaseous emissions from the fluidised bed co-combustion of 50% w/w chicken litter and peat were monitored and recorded. Emission data were used to create a dispersion model for a proposed site on a poultry farm in Ireland. Variables within the combustion unit influenced both combustion and emission levels of pollutants such as SO(2) and NO(x), CO. Concentrations of atmospheric pollutants decreased with use of the correct ratio between fluidising and secondary air. Dispersion modelling of combustion at a proposed poultry unit predicted that ground level concentrations for the set of emissions data would be below the limits and guidelines set by air quality standards.  相似文献   

8.
Lignocellulosic wastes, including corn stalks and wheat straw, were pretreated and hydrolyzed with combined supercritical and subcritical hydrothermal technology. Soluble sugars were collected by pre-washing the crushed materials before hydrolysis. The effects of solid–liquid ratio, temperature, and reaction time on oligosaccharide production were investigated and the optimum supercritical conditions were found to be 20 mg/2.5 ml water, 384 °C, 17 s for corn stalks and 20 mg/2.5 ml water, 384 °C, 19 s for wheat straw. Subsequent subcritical processing of the hydrolyzate (with or without the water extract) from supercritical treatment was guided by a previous analysis of cellulose hydrolysis kinetics. The highest yield of fermentable hexoses from corn stalks (27.4% of raw material) was obtained at 280 °C, 27 s, and from wheat straw (6.7% of raw material) at 280 °C, 54 s. This study provides novel key parameters for fermentable hexose production from lignocellulosic feedstocks using combined supercritical and subcritical hydrothermal treatment.  相似文献   

9.
Li Z  Zhao W  Meng B  Liu C  Zhu Q  Zhao G 《Bioresource technology》2008,99(16):7616-7622
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.  相似文献   

10.
Abstract

The influence of soil fungi on soil organic carbon (OC) from surface residue was tested in outdoor plots in southern Ontario, Canada, 2004. Fungal hyphal length, soil aggregation, OC and light and heavy fractions of organic matter were compared with factors of plant growth (with or without oat [Avena sativa]) and surface residue (no residue, oat straw (low C:N) or corn (Zea mays) stalks (high C:N)) in a factorial arrangement. Significant increases were observed in soil OC from the oat plants, and from corn stalks compared to straw residue, in the growing season with very moist, high OC, sandy soil. In treatments with corn stalk residue, fungal hyphal length was increased with interaction from the oat plants and residue and was positively correlated with the heavy fraction organic matter along with soil OC. Fungal hyphae, plant roots and high C:N residue were all factors in soil OC increases.  相似文献   

11.
Three white-rot fungi, Phanerochaete chrysosporium, Polyporus tulipiferae, and Polyporus sp. A336 were grown on 100-g amounts of chopped oat straw in gassed 4.5 L (diameter 16 cm, height 23 cm) solid-state reactors for two weeks. The different gas atmospheres were regulated by (1) air diffusion through foam plugs, (2) intermittent or continuous air flow, (3) intermittent oxygen, 50 or 100% continuous oxygen flow, and (4) continuous 10% carbon dioxide in oxygen flow. The fermented straw was analyzed for total weight loss, Klason lignin loss, and enzymatic (cellulase) hydrolysis. P. chrysosporium grown on straw in continuous oxygen at 35 degrees C caused a 41% weight loss and 33.5% hydrolysis was obtained when the pretreated straw was hydrolyzed with cellulase enzyme. P. tulipiferae caused a 27% weight loss and 34.3% cellulase hydrolysis in the straw at 30 degrees C. Polyporus sp. A336 selectively degraded lignin of the straw and under intermittent oxygen resulted in an 18% weight loss and 33.6% cellulase hydrolysis at 35 degrees C. When the straw was supplemented with 10% xylose (straw basis) and was continuously gassed with 50% oxygen, Polyporus sp. A336 produced a 14.5% weight loss and 38.7% cellulase hydrolysis. Oxygen and carbon dioxide exchange rates were measured for some of these bench-scale fermentations.  相似文献   

12.
《Biological Wastes》1987,19(3):227-231
The available quantities of residues of castor, pearl millet, mustard and potato were estimated on per hectare basis. Tensile strength and central load-bearing capactiy of castor stem were measured to determine its usefullness in rural housing. The nutritive value of shells and leaves of castor, mustard straw and potato haulm were determined to assess their use as manure. The calorific value of stalk and shell of castor, stalk and straw of mustard and husk of pearl millet was also determined to study their fuel value. The study shows that the castor stalks may be utilised in rural housing. The castor shells and leaves, pearl millet husk, mustard straw and potato haulm are useful in composting and biogas generation. The calorific values of stalk and straw of mustard and castor stalks show their promise for direct burning.  相似文献   

13.
In the present study, the potential of cotton stalks utilization for H(2) and syngas production with respect to CO(2) mitigation, by means of thermochemical conversion (pyrolysis and gasification) was investigated. Pyrolysis was conducted at temperature range of 400-760 degrees C and the main parametric study concerned the effect of temperature on pyrolysis product distribution. Atmospheric pressure, air gasification at 750-950 degrees C for various lambda (0.02-0.07) was also studied. Experimental results showed that high temperature favors gas production in both processes; while low lambda gasification gave high gas yield. Syngas (CO and H(2)) was increased with temperature, while CO(2) followed an opposite trend. By pyrolysis, higher H(2) concentration in the produced gas (approximately 39% v/v) was achieved and at the same time lower amounts of CO(2) produced, compared to air gasification.  相似文献   

14.
Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100%) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No. 2 diesel at 28.3 degrees C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 degrees C (PBSY-28), (3) crude cottonseed oil at 28.3 degrees C (Crude-28), (4) PBSY at 60 degrees C (PBSY-60), and (5) crude at 60 degrees C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 degrees C resulted in higher NO(x) emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 degrees C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations.  相似文献   

15.
Due to the ban on meat and bone meal (MBM) as an animal feed, combustion with energy recovery has been considered a viable alternative usage for the mounting stocks of MBM. The effects of the co-combustion of MBM and peat on flue gas emissions and fluidisation were studied using a bubbling fluidised bed (BFB) test facility (20 kW). The dispersion of emissions such as nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), hydrogen chloride (HCl) and particulates was investigated for a proposed site and compared to the relevant national and international regulations. Concentrations of NO2, CO and HCl were less than 10% of legislative and guideline thresholds while ground level concentrations of SO2 were also below relevant EU and world guidelines. The results indicate the potential for using MBM as a co-fuel with peat in a BFB while maintaining high air quality standards.  相似文献   

16.
Characterization of products from the pyrolysis of rapeseed oil cake   总被引:2,自引:0,他引:2  
Ucar S  Ozkan AR 《Bioresource technology》2008,99(18):8771-8776
The main aim of this study was to investigate the composition of products from the pyrolysis of rapeseed oil cake in a fixed bed reactor at 400, 450, 500, 700 and 900 degrees C. The gas products mainly consisted of CO(2), CO, CH(4) and H(2)S at 500 degrees C. Empirical formula of bio-oil from the pyrolysis of rapeseed oil cake was CH(1.59)O(0.16)N(0.116)S(0.003) for 500 degrees C. Bio-oils mainly contained oleic acid, 1H-indole, 2,3,5-trimethoxy toluene, toluene, (Z)-9-octadecanamide, psoralene, phenol and phenol derivatives at all pyrolysis temperatures. Both non-aromatic and aromatic hydrocarbon compounds were determined in water phase of liquid product by Headspace-GC analysis. The heating values of bio-chars were found to be similar (24MJkg(-1)) at all pyrolysis temperatures.  相似文献   

17.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

18.
The novel thermophilic CO- and H(2)-oxidizing bacterium UBT1 has been isolated from the covering soil of a burning charcoal pile. The isolate is gram positive and obligately chemolithoautotrophic and has been named Streptomyces thermoautotrophicus on the basis of G+C content (70.6 +/- 0.19 mol%), a phospholipid pattern of type II, MK-9(H(4)) as the major quinone, and other chemotaxonomic and morphological properties. S. thermoautotrophicus could grow with CO (t(d) = 8 h), H(2) plus CO(2) (t(d) = 6 h), car exhaust, or gas produced by the incomplete combustion of wood. Complex media or heterotrophic substrates such as sugars, organic acids, amino acids, and alcohols did not support growth. Molybdenum was required for CO-autotrophic growth. For growth with H(2), nickel was not necessary. The optimum growth temperature was 65 degrees C; no growth was observed below 40 degrees C. However, CO-grown cells were able to oxidize CO at temperatures of 10 to 70 degrees C. Temperature profiles of burning charcoal piles revealed that, up to a depth of about 10 to 25 cm, the entire covering soil provides a suitable habitat for S. thermoautotrophicus. The K(m) was 88 mul of CO liter and V(max) was 20.2 mul of CO h mg of protein. The threshold value of S. thermoautotrophicus of 0.2 mul of CO liter was similar to those of various soils. The specific CO-oxidizing activity in extracts with phenazinemethosulfate plus 2,6-dichlorophenolindophenol as electron acceptors was 246 mumol min mg of protein. In exception to other carboxydotrophic bacteria, S. thermoautotrophicus CO dehydrogenase was able to reduce low potential electron acceptors such as methyl and benzyl viologens.  相似文献   

19.
In the present study, granular activated carbons were prepared from agricultural waste corn cob by chemical activation with potassium salts and/or physical activation with CO2. Under the experimental conditions investigated, potassium hydroxide (KOH) and potassium carbonate (K2CO3) were effective activating agents for chemical activation during a ramping period of 10 degrees C/min and subsequent gasification (i.e., physical activation) at a soaking period of 800 degrees C. Large BET surface areas (>1,600 m2/g) of activated carbons were thus obtained by the combined activation. In addition, this study clearly showed that the porosity created in the acid-unwashed carbon products is substantially lower than that of acid-washed carbon products due to potassium salts left in the pore structure.  相似文献   

20.
双孢蘑菇堆肥中真菌群落多样性分析   总被引:1,自引:1,他引:0  
以农作物玉米秸和稻草、牛粪为原料,分别设计双孢蘑菇Agaricus bisporus堆肥配方并进行堆肥发酵,研究二者堆肥过程中真菌多样性。在建堆、一次发酵结束和二次发酵结束3个时期分别采集堆肥样品,提取总DNA,以真菌18S rDNA基因通用引物,进行PCR-DGGE扩增和序列分析。累计获得39条特异条带18S rDNA基因信息,分属于真菌14个属、藻类7个属和原生动物3个属。子囊菌是两种配方堆肥过程中的优势菌群,建堆时期的优势类群为Pichia和Wickerhamomyces,一次和二次发酵时期的优势类群为Chaetomium和Lecythophora。多样性指数分析显示,稻草配方微生物多样性大于玉米秸配方;主成分分析(PCA)显示,玉米秸配方一次发酵结束时期与稻草和玉米二次发酵结束时期聚为一类,说明玉米秸配方堆肥提前腐熟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号