首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.  相似文献   

2.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

3.
Heating oil and oilseeds results in oxidation products that affect ruminal biohydrogenation of polyunsaturated fatty acids, altering milk fatty acids profile, and could be transferred to milk. An experiment was conducted to investigate the effects of oil heating on rumen and milk fatty acids profile and the transfer of oxidation products to milk. Sunflower oil was heated at 150°C for 15 h and given to lactating dairy cows in a 2×2 arrangement: two groups of two cows, equipped with a ruminal cannula and receiving two diets (containing either heated or unheated oil) during two experimental periods. Oil heating generated hydroperoxides and/or hydroxyacids and aldehydes, in particular trans-2,trans-4-decadienal. In milk, heated oil only significantly decreased trans-11-C18:1 and cis-9,trans-11-CLA percentage compared to non-heated oil, and slightly increased cis-9,cis-12-C18:2 percentage, which was probably linked to an inhibition of the ruminal Δ12 isomerase by oxidative products in the rumen. However, feeding highly oxidized oil did not result in the appearance of hydroperoxides or hydroxyacids in milk and did not increase milk aldehydes content.  相似文献   

4.
Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (−12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.  相似文献   

5.
Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3–N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.  相似文献   

6.
Oilseeds offer some protection to the access of ruminal microorganisms and may be an alternative to calcium salts of fatty acids (FA), which are not fully inert in the ruminal environment. This study aimed to evaluate the effects of different sources of FA supplementation on apparent total tract nutrient digestibility, milk yield and composition, and energy balance (EB) of cows during the transition period and early lactation. We compared diets rich in C18:2 and C18:3 FA. Multiparous Holstein cows were randomly assigned to receive one of the four diets: control (n=11); whole flaxseed (WF, n=10), 60 and 80 g/kg (diet dry matter (DM) basis) of WF during the prepartum and postpartum periods, respectively; whole raw soybeans (WS, n=10), 120 and 160 g/kg (diet DM basis) of WS during the prepartum and postpartum periods, respectively; and calcium salts of unsaturated fatty acids (CSFA, n=11), 24 and 32 g/kg (diet DM basis) of CSFA during the prepartum and postpartum periods, respectively. Dry cows fed WF had higher DM and net energy of lactation (NEL) intake than those fed WS or CSFA. The FA supplementation did not alter DM and NDF apparent total tract digestibility, dry cows fed WF exhibited greater NDF total tract digestion than cows fed WS or CSFA. Feeding WS instead of CSFA did not alter NEL intake and total tract digestion of nutrients, but increased milk fat yield and concentration. Calculated efficiency of milk yield was not altered by diets. FA supplementation increased EB during the postpartum period. Experimental diets increased long-chain FA (saturated and unsaturated FA) in milk. In addition, cows fed WS and CSFA had higher C18:1 trans-11 FA and C18:2 cis, and lower C18:3 FA in milk than those fed WF. Furthermore, cows fed CSFA had higher C18:1 trans-11 and cis-9, trans-11 FA than cows fed WS. Although supplemental C18:2 and C18:3 FA did not influence the milk yield of cows, they positively affected EB and increased unsaturated long-chain FA in milk fat.  相似文献   

7.
Five sheep with rumen and abomasal cannulae were offered three diets sequentially in the order: control (C) pellets (lucerne hay-oat grain: 60/40, w/w), control plus unprotected tuna oil (UTO pellets), and control plus tuna oil protected (casein-formaldehyde matrix) against ruminal biohydrogenation (PTO pellets). In supplemented diets, tuna oil constituted 3% (w/w) of total dry matter (DM), and each supplement was fed for 12 days, with 9 days allowed between the two fish oil feeding periods to minimise carry-over effects. Daily DM intake was 785±38 g/head during the control period. It was significantly reduced by UTO feeding (6.2%, P<0.05) but not PTO feeding. The level of EPA in the abomasum during PTO feeding was double that measured during UTO feeding (1.30 versus 0.61% of FA, P<0.05). The level of DHA in the abomasum did not significantly differ between UTO and PTO feeding periods. Both tuna oil supplements significantly increased the levels of 18:1 trans and that of a fatty acid derivative identified as 10-hydroxystearic acid (10-HSA) in both the rumen and abomsum. Tuna oil supplementation also altered the fatty acid composition of plasma lipid fractions and 10-HSA was solely incorporated into plasma free fatty acids. This study indicates that substantial protection of tuna oil against ruminal hydrogenation inhibited reduced feed intake, but increased the proportion of 18:1 trans isomer and fatty acids derivatives (10-HSA), which indicate interference with metabolism in the rumen.  相似文献   

8.
The objective of this study was to investigate the effects of a flaxseed-supplemented diet on archaeal abundance and gene expression of methanogens in the rumen of dairy cows. In all, 11 non-lactating dairy cows were randomly divided into two groups: group A (five cows) and B (six cows). The two diets fed were: (1) the control diet, a conventional dry cow ration; and (2) the flaxseed-supplemented diet, the conventional dry cow ration adjusted with 12.16% ground flaxseed incorporated into the total mixed ration. A cross-over experiment was performed with the two groups of cows fed the two different diets for five 21-day periods, which included the first adaptation period followed by two treatment and two wash out periods. At the end of each feeding period, rumen fluid samples were collected via rumenocentesis and DNA was extracted. Quantitative PCR was utilized to analyze the gene abundance of 16S ribosomal RNA (16S rRNA) targeting the ruminal archaea population and the mcrA gene coding for methyl coenzyme-M reductase subunit A, a terminal enzyme in the methanogenesis pathway. Results demonstrated a 49% reduction of 16S rRNA and 50% reduction of mcrA gene abundances in the rumen of dairy cows fed the flaxseed-supplemented diet in comparison with those fed the control diet. This shows flaxseed supplementation effectively decreases the methanogenic population in the rumen. Future studies will focus on the mechanisms for such reduction in the rumen of dairy cattle, as well as the relationship between methanogenic gene expression and methane production.  相似文献   

9.
Changing the diet of five lactating cows and one nonlactating cow from high to low roughage induced milk fat depression in the lactating cows and altered the composition of the rumen microflora. While the numbers of lactic and propionic acid-producing bacteria increased, the numbers of Butyrivibrio spp. decreased. The numbers of lipolytic bacteria and the in vitro lipolytic activity of the rumen fluid were also decreased, as was the extent of hydrogenation of linoleic and linolenic acids combined in soybean oil incubated in vitro with rumen fluid. It is suggested that among the bacterial population in the rumen the vibrios, which were adversely affected by the low-roughage diets, may contribute significantly to both lipolysis and hydrogenation in the rumen.  相似文献   

10.
Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg−1 silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study.  相似文献   

11.
Forage brassicas, such as summer turnip (ST; Brassica rapa) and forage rape (FR; Brassica napus), are used as supplementary crops during summer. However, studies with lactating dairy cows fed these forages are limited and report inconsistent productive responses. The aim of this study was to determine dry matter intake, rumen fermentation and milk production responses of dairy cows in mid-lactation supplemented with and without summer (‘ST’ or ‘FR’) brassicas. Twelve multiparous lactating dairy cows were randomly allocated to three dietary treatments in a replicated 3 × 3 Latin square design balanced for residual effects over three 21-day periods. The control diet consisted of 16.2 kg DM of grass silage, 2.25 kg DM of commercial concentrate and 2.25 kg DM solvent-extracted soybean meal. For the other two dietary treatments, 25% of the amounts of silage and concentrates were replaced with FR or ST. The inclusion of forage brassicas had no effects on milk production (24.2 kg cow/day average) and composition (average milk fat and protein 43.2 and 33.6 g/l, respectively). Dry matter intake was 0.98 kg and 1.12 kg lower for cows supplemented with FR and ST, respectively, resulting in a greater feed conversion efficiency (1.35 kg milk/kg DM for ST and FR v. 1.27 kg milk/kg DM for the control diet). Intraruminal pH was lower for cows supplemented with ST compared to the control diet; however, it did not decrease below pH 5.8 at any time of the day. After feeding, the concentrations of total short-chain fatty acids (SCFAs) in rumen contents increased with ST supplementation compared to the control diet. Inclusion of FR in the diet increased the molar proportion of acetate (68.5 mmol/100 mmol) in total SCFA at the expense of propionate, measured 6 h after feeding of the forage. The molar proportion of butyric acid was greater with ST and FR supplementation (13.1 and 12 mmol/100 mmol, respectively) than in control cows. The estimated microbial nitrogen (N) flow was 89.1 g/day greater when supplementing FR compared to the control diet. Based on the haematological measures, the inclusion of summer brassica forages did not affect the health status of the animals. These results indicate that mid-lactation dairy cows fed brassicas are able to maintain production despite the reduced intake, probably due to improved rumen fermentation and therefore nutrient utilization.  相似文献   

12.
This study was designed to determine the rumen outflow of fatty acids (FA) and biohydrogenation (BH) extent using alternative sampling sites (reticulum and omasum) to abomasum in dry cows fed different sources of FA. Four Holstein non-pregnant dry cows (≥3 parturitions, and 712 ± 125 kg BW), cannulated in the rumen and abomasum, were randomly assigned to a 4 × 4 Latin square design experiment, containing the following treatments: 1) control (CON); 2) soya bean oil (SO), dietary inclusion at 30 g/kg; 3) whole raw soya beans (WS), dietary inclusion at 160 g/kg; and 4) calcium salts of FA (CSFA), dietary inclusion at 32 g/kg. Rumen outflow of nutrients was estimated using the three markers reconstitution system (cobalt-EDTA, ytterbium chloride, and indigestible neutral detergent fibre [NDF]). Diets with FA sources decreased feed intake and increased FA intake. No differences in nutrient intake and digestibility were detected among cows fed diets supplemented with different FA sources. Diets with FA sources reduced the rumen outflow of DM and NDF, hence decreasing their passage rates. In addition, SO diet reduced the ruminal outflow of DM and NDF in comparison with WS and CSFA. Omasal sampling yielded the highest values of rumen outflow of NDF and potentially degradable NDF (pdNDF), whereas the reticular and abomasal samplings yielded intermediate and least values, respectively. The interaction effect between diet and sampling site was observed for rumen outflow of majority FA (except for C16:0, C18:0, and C18:2 trans-10, cis-12) and BH extension of C18:1 cis, C18:2, and C18:3. Calculations derived from abomasal sampling revealed that WS and CSFA diets had lower BH extent of C18:1 cis and C18:2 in comparison with SO, whereas cows fed CSFA had greater BH extent of C18:3 and lower BH extent of C18:1 cis compared to those fed WS. However, the latter results were not similar when calculations were performed based on the reticular and omasal samplings. Thus, there is evidence that neither reticular nor omasal samplings are suitable for estimating rumen outflow of FA in dry cows. In addition, WS and CSFA diets can increase the abomasal flow of polyunsaturated FA in dry cows.  相似文献   

13.
Lowering dietary protein concentration is known to decrease urinary nitrogen (N) losses and increase milk N efficiency in dairy cows, but it may negatively affect animal productivity. Plant-derived essential oils (EO) may alleviate these negative effects by improving the efficiency of rumen fermentation in cows fed reduced feed protein diets. The experiment was conducted to investigate the effects of lowering crude protein (CP) supply alone or in a combination with an EO product on feed intake, milk production and composition, rumen fermentation, total tract digestibility and N utilization in dairy cows. Twenty-one Holstein cows were used in a replicated 3 × 3 Latin square design experiment. Each period consisted of 14 days for adaptation and 14 days for data collection and sampling. Cows were randomly assigned to one of three experimental diets: a 165 g/kg CP diet (control), a 155 g/kg CP diet (LCP) and LCP supplemented with 35 g/day per cow EO (LCPEO). The dry matter (DM) intake was decreased by LCP and LCPEO compared with the control; there was no effect of EO on DM intake. Milk yield and composition and feed efficiency were similar among treatments. Ruminal pH, lactate, ammonia and volatile fatty acids concentrations were not affected by treatment, except increased valerate concentration by LCPEO compared with LCP. The supplementation of EO tended to decrease protozoal counts. The LCP and LCPEO increased total tract digestibility of DM and organic matter and decreased CP digestibility compared with the control. Supplementation with EO did not affect total tract digestibility of dietary nutrients compared with the control or LCP. The LCP and LCPEO decreased urinary and fecal N excretions and increased milk N efficiency; nitrogen losses were not affected by EO. In this study, lowering dietary CP by 10 g/kg decreased urinary and fecal N excretion without affecting productivity. The supplementation of EO to LCP had only minor effects on rumen fermentation and did not affect productivity, digestibility and N excretion in lactating dairy cows.  相似文献   

14.
The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.  相似文献   

15.
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3.  相似文献   

16.
From the simultaneous accumulation of hydrogenation intermediates and the disappearance of Isotricha prostoma after algae supplementation, we suggested a role of this ciliate and/or its associated bacteria in rumen biohydrogenation of unsaturated fatty acids. The experiments described here evaluated the role of I. prostoma and/or its associated endogenous and exogenous bacteria in rumen biohydrogenation of C18:2n-6 and its main intermediates CLA c9t11 and C18:1t11. Fractions of I. prostoma and associated bacteria, obtained by sedimentation of rumen fluid sampled from a monofaunated sheep, were used untreated, treated with antibiotics or sonicated to discriminate between the activity of I. prostoma and its associated bacteria, the protozoan or the bacteria, respectively. Incubations were performed in triplicate during 6 h with unesterified C18:2n-6, CLA c9t11 or C18:1t11 (400 μg/ml) and 0.1 g glucose/cellobiose (1/1, w/w). I. prostoma did not hydrogenate C18:2n-6 or its intermediates whereas bacteria associated with I. prostoma converted a limited amount of C18:2n-6 and CLA c9t11 to trans monoenes. C18:1t11 was not hydrogenated by either I. prostoma or its associated bacteria but was isomerized to C18:1c9. A phylogenetic analysis of clones originating from Butyrivibrio-specific PCR product was performed. This indicated that 71% of the clones from the endogenous and exogenous community clustered in close relationship with Lachnospira pectinoschiza. Additionally, the biohydrogenation activity of solid-associated bacteria (SAB) and liquid-associated bacteria (LAB) was examined and compared with the activity of the non-fractioned I. prostoma monofaunated rumen fluid (LAB + SAB). Both SAB and LAB were involved in rumen biohydrogenation of C18:2n-6. SAB fractions performed the full hydrogenation reaction to C18:0 while C18:1 fatty acids, predominantly C18:1t10 and C18:1t11, accumulated in the LAB fractions. SAB and LAB sequence analyses were mainly related to the genera Butyrivibrio and Pseudobutyrivibrio with 12% of the SAB clones closely related to the C18:0 producing B. proteoclasticus branch. In conclusion, this work suggests that I. prostoma and its associated bacteria play no role in C18:2n-6 biohydrogenation, while LAB convert C18:2n-6 to a wide range of C18:1 fatty acids and SAB produce C18:0, the end product of rumen lipid metabolism.  相似文献   

17.
In this study, we hypothesized that dietary cocoa bean shell (CBS) as a partial replacer of human edible cereal grains in the diet of lactating ewes may affect performance and milk and cheese composition. Twenty Comisana lactating ewes allotted into control (CTRL; n = 10) or cocoa (CBS; n = 10) group received alfalfa hay ad libitum and 800 g of conventional (CTRL) or experimental (CBS) concentrate containing 11.7% CBS to partially replace corn and barley of the CTRL concentrate. Milk yield and composition did not differ between groups, and only urea concentration was lower in CBS milk. Dietary CBS increased cheese fat and reduced protein percentage in CBS group. Fatty acid composition of rumen content partially reflected that of the ingested diet, with total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA), 16:0, 18:0 and 18:1c9 greater in the CBS group. Moreover, all the identified trans- and cis-18:1 isomers were greater in CBS rumen content. Milk and cheese showed a similar fatty acid composition. Total MUFAs were greater in milk and cheese of CBS, mainly due to the proportion of 18:1c9, and conversely, total polyunsaturated fatty acids (PUFA), PUFAn-6 and PUFAn-6-to-PUFAn-3 ratio was greater in CTRL group. Concluding, the inclusion of CBS in the diet of lactating ewes within the limit imposed by the current legislation did not cause detrimental effects on animal performance and milk composition. Interestingly, dietary CBS reduced milk urea concentration probably due to the phenols contained in CBS concentrate. However, our results support that biohydrogenation was weakly impaired by dietary CBS. Finally, CBS negatively affected cheese nutritional characteristics due to lower protein and greater fat content, but improved fat health indexes in milk and cheese.  相似文献   

18.
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect.  相似文献   

19.
20.
Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double‐bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号