首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ghanem M  Gadda G 《Biochemistry》2006,45(10):3437-3447
A protein positive charge near the flavin N(1) locus is a distinguishing feature of most flavoprotein oxidases, with mechanistic implications for the modulation of flavin reactivity. A recent study showed that in the active site of choline oxidase the protein positive charge is provided by His(466). Here, we have reversed the charge by substitution with aspartate (CHO-H466D) and, for the first time, characterized a flavoprotein oxidase with a negative charge near the flavin N(1) locus. CHO-H466D formed a stable complex with choline but lost the ability to oxidize the substrate. In contrast to the wild-type enzyme, which binds FAD covalently in a 1:1 ratio, CHO-H466D contained approximately 0.3 FAD per protein, of which 75% was not covalently bound to the enzyme. Anaerobic reduction of CHO-H466D resulted in the formation of a neutral hydroquinone, with no stabilization of the flavin semiquinone; in contrast, the anionic semiquinone and hydroquinone species were observed with the wild type and a H466A variant of the enzyme. The midpoint reduction potential for the oxidized-reduced couple in CHO-H466D was approximately 160 mV lower than that of the wild-type enzyme. Finally, CHO-H466D lost the ability to form complexes with glycine betaine or sulfite. Thus, with a reversal of the protein charge near the FAD N(1) locus, choline oxidase lost the ability to stabilize negative charges in the active site, irrespective of whether they develop on the flavin or are borne on ligands, resulting in defective flavinylation of the protein, the decreased electrophilicity of the flavin, and the consequent loss of catalytic activity.  相似文献   

2.
Choline oxidase catalyzes the four-electron, flavin-linked oxidation of choline to glycine betaine with transient formation of an enzyme-bound aldehyde intermediate. The recent determination of the crystal structure of choline oxidase to a resolution of 1.86 A established the presence of two histidine residues in the active site, which may participate in catalysis. His466 was the subject of a previous study [Ghanem, M., and Gadda, G. (2005) Biochemistry 44, 893-904]. In this study, His351 was replaced with alanine using site-directed mutagenesis, and the resulting mutant enzyme was purified and characterized in its mechanistic properties. The results presented establish that His351 contributes to substrate binding and positioning and stabilizes the transition state for the hydride transfer reaction to the flavin, as suggested by anaerobic substrate reduction stopped-flow data. Furthermore, His351 contributes to the overall polarity of the active site by modulating the p K a of the group that deprotonates choline to the alkoxide species, as indicated by pH profiles of the steady-state kinetic parameters with the substrate or a competitive inhibitor. Surprisingly, His351 is not involved in the activation of the reduced flavin for reaction with oxygen. The latter observation, along with previous mutagenesis data on His466, allow us to conclude that choline oxidase must necessarily utilize a strategy for oxygen reduction different from that established for glucose oxidase, where other authors showed that the catalytic effect almost entirely arises from a protonated histidine residue.  相似文献   

3.
Rand T  Halkier T  Hansen OC 《Biochemistry》2003,42(23):7188-7194
The flavoenzyme choline oxidase catalyzes the oxidation of choline and betaine aldehyde to betaine. Earlier studies have shown that the choline oxidase from Arthrobacter globiformis contains FAD covalently linked to a histidine residue. To identify the exact type of flavin binding, the FAD-carrying amino acid residue was released by acid hydrolysis. The fluorescence excitation maxima of the isolated aminoacylriboflavin, showing a hypsochromic shift of the near-ultraviolet band relative to riboflavin, and the pH-dependent flavin fluorescence confirmed the presence of an 8alpha-substituted flavin linked to histidine. Similarly, MALDI-TOF mass spectrometry showed a molecular mass corresponding to histidylriboflavin. Classical experiments used to distinguish between the N(1) and N(3) isomers all indicated that the flavin was linked to the N(1) position of the histidine residue. The position of the FAD-carrying histidine residue in the choline oxidase polypeptide was identified by tryptic cleavage of the denatured enzyme, HPLC separation of the proteolytic peptide fragments, and characterization of the purified flavin-carrying peptide by mass spectrometry and spectroscopy. The FAD moiety was assigned to the tryptic peptide, His-Ala-Arg, corresponding to residues 87-89 in the open reading frame of the previously published cDNA sequence. Further analysis of the flavopeptide by collision-induced dissociation mass spectrometry confirmed that the flavin cofactor was attached to His(87). We conclude that this variant of choline oxidase contains 8alpha-[N(1)-histidyl]FAD at position 87 in the polypeptide chain.  相似文献   

4.
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N(1)-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k(cat)/K(O2) value changes very little upon mutation with N(1)-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k(cat)/K(M)-pH profiles with N(1)-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK(a) values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK(a) as wild-type Fms1, about ~7.4; this pK(a) is assigned to the substrate N4. The k(cat)/K(O2)-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK(a) of about ~6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k(cat) value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 ?. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.  相似文献   

5.
Cellobiose dehydrogenase is an extracellular flavocytochrome, which catalyzes the oxidation of cellobiose and other soluble oligosaccharides to their respective lactones, while reducing various one- and two-electron acceptors. Two residues at the active site of the flavin domain, His689 and Asn732, have been proposed to play critical roles in the oxidation of the substrate. To test these proposals, each residue was substituted with either a Gln, Asn, Glu, Asp, Val, Ala, and/or a His residue by site-directed mutagenesis, using a homologous expression system previously developed in our laboratory. This enabled an examination of the functional, stereochemical, and electrostatic constraints for binding and oxidation of the substrate. The steady-state kinetic parameters for the variant proteins were compared using cellobiose and its epimer, lactose, as the substrates. The H689 variants all exhibit >1000-fold lower k(cat) values, while the K(m) values for both substrates in these variants are similar to that of the wild-type enzyme. This supports the proposed role of this His residue as a general base in catalysis. The N732 variants exhibit a range of kinetic parameters: the k(cat) values for oxidation are 5-4000-fold lower than that for the wild-type enzyme, while the K(m) values vary between similar to and 60-fold higher than that for the wild-type. The difference in binding energy between cellobiose and lactose was calculated using the relationship delta(delta G) = -RT ln[(k(cat)/K(m))(lactose)/(k(cat)/K(m))(cellobiose)]. This calculation for the wild-type enzyme suggests that lactose binds considerably more weakly than cellobiose (7.2 kJ/mol difference), which corresponds to one extra (cumulative) hydrogen bond for cellobiose over lactose. Mutations at Asn732 result in a further weakening of lactose binding over cellobiose (2-4 kJ/mol difference). The results support a role for Asn732 in the binding of the substrate.  相似文献   

6.
Yuan H  Gadda G 《Biochemistry》2011,50(5):770-779
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.  相似文献   

7.
2-Nitropropane dioxygenase (EC 1.13.11.32) catalyzes the oxidation of nitroalkanes into their corresponding carbonyl compounds and nitrite. In this study, the ncd-2 gene encoding for the enzyme in Neurospora crassa was cloned, expressed in Escherichia coli, and the resulting enzyme was purified. Size exclusion chromatography, heat denaturation, and mass spectroscopic analyses showed that 2-nitropropane dioxygenase is a homodimer of 80 kDa, containing a mole of non-covalently bound FMN per mole of subunit, and is devoid of iron. With neutral nitroalkanes and anionic nitronates other than propyl-1- and propyl-2-nitronate, for which a non-enzymatic free radical reaction involving superoxide was established using superoxide dismutase, substrate oxidation occurs within the enzyme active site. The enzyme was more specific for nitronates than nitroalkanes, as suggested by the second order rate constant k(cat)/K(m) determined with 2-nitropropane and primary nitroalkanes with alkyl chain lengths between 2 and 6 carbons. The steady state kinetic mechanism with 2-nitropropane, nitroethane, nitrobutane, and nitrohexane, in either the neutral or anionic form, was determined to be sequential, consistent with oxygen reacting with a reduced form of enzyme before release of the carbonyl product. Enzyme-monitored turnover with ethyl nitronate as substrate indicated that the catalytically relevant reduced form of enzyme is an anionic flavin semiquinone, whose formation requires the substrate, but not molecular oxygen, as suggested by anaerobic substrate reduction with nitroethane or ethyl nitronate. Substrate deuterium kinetic isotope effects with 1,2-[(2)H(4)]nitroethane and 1,1,2-[(2)H(3) ethyl nitronate at pH 8 yielded normal and inverse effects on the k(cat)/K(m) value, respectively, and were negligible on the k(cat) value. The k(cat)/K(m) and k(cat) pH profiles with anionic nitronates showed the requirement of an acid, whereas those for neutral nitroalkanes were consistent with the involvement of both an acid and a base in catalysis. The kinetic data reported herein are consistent with an oxidasestyle catalytic mechanism for 2-nitropropane dioxygenase, in which the flavin-mediated oxidation of the anionic nitronates or neutral nitroalkanes and the subsequent oxidation of the enzyme-bound flavin occur in two independent steps.  相似文献   

8.
The crystal structure of aryl-alcohol oxidase (AAO), a flavoenzyme involved in lignin degradation, reveals two active-site histidines, whose role in the two enzyme half-reactions was investigated. The redox state of flavin during turnover of the variants obtained show a stronger histidine involvement in the reductive than in the oxidative half-reaction. This was confirmed by the k(cat)/K(m(Al)) and reduction constants that are 2-3 orders of magnitude decreased for the His546 variants and up to 5 orders for the His502 variants, while the corresponding O(2) constants only decreased up to 1 order of magnitude. These results confirm His502 as the catalytic base in the AAO reductive half-reaction. The solvent kinetic isotope effect (KIE) revealed that hydroxyl proton abstraction is partially limiting the reaction, while the α-deuterated alcohol KIE showed a stereoselective hydride transfer. Concerning the oxidative half-reaction, directed mutagenesis and computational simulations indicate that only His502 is involved. Quantum mechanical/molecular mechanical (QM/MM) reveals an initial partial electron transfer from the reduced FADH(-) to O(2), without formation of a flavin-hydroperoxide intermediate. Reaction follows with a nearly barrierless His502H(+) proton transfer that decreases the triplet/singlet gap. Spin inversion and second electron transfer, concomitant with a slower proton transfer from flavin N5, yields H(2)O(2). No solvent KIE was found for O(2) reduction confirming that the His502 proton transfer does not limit the oxidative half-reaction. However, the small KIE on k(cat)/K(m(Ox)), during steady-state oxidation of α-deuterated alcohol, suggests that the second proton transfer from N5H is partially limiting, as predicted by the QM/MM simulations.  相似文献   

9.
Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the interconversion of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting an intrahydrogen transfer between C1 and C2. A conserved histidine exists throughout all phosphoglucose isomerases and was hypothesized to be the base catalyzing the isomerization reaction. In the present study, this conserved histidine, His311, of the enzyme from Bacillus stearothermophilus was subjected to mutational analysis, and the mutational effect on the inactivation kinetics by N-bromoacetylethanolamine phosphate was investigated. The substitution of His311 with alanine, asparagine, or glutamine resulted in the decrease of activity, in k(cat)/K(M), by a factor of 10(3), indicating the importance of this residue. N-bromoacetylethanolamine phosphate inactivated irreversibly the activity of wild-type phosphoglucose isomerase; however, His311 --> Ala became resistant to this inhibitor, indicating that His311 is located in the active site and is responsible for the inactivation of the enzyme by this active site-directed inhibitor. The pKa of His311 was estimated to be 6.31 according to the pH dependence of the inactivation. The proximity of this value with the pKa value of 6.35, determined from the pH dependence of k(cat)/K(M), supports a role of His311 as a general base in the catalysis.  相似文献   

10.
Royo M  Fitzpatrick PF 《Biochemistry》2005,44(18):7079-7084
In mammalian cells, the flavoprotein polyamine oxidase catalyzes a key step in the catabolism of polyamines, the oxidation of N1-acetylspermine and N1-acetylspermidine to spermidine and putrescine, respectively. The mechanism of the mouse enzyme has been studied with N1,N12-bisethylspermine (BESPM) as a substrate. At pH 10, the pH optimum, the limiting rate of reduction of the flavin in the absence of oxygen is comparable to the k(cat) value for turnover, establishing reduction as rate-limiting. Oxidation of the reduced enzyme is a simple second-order reaction. No intermediates are seen in the reductive or oxidative half-reactions. The k(cat) value decreases below a pK(a) of 9.0. The k(cat)/K(m) value for BESPM exhibits a bell-shaped pH profile, with pK(a) values of 9.8 and 10.8. These pK(a) values are assigned to the substrate nitrogens. The rate constant for the reaction of the reduced enzyme with oxygen is not affected by a pH between 7.5 and 10. Active site residue Tyr430 is conserved in the homologous protein monoamine oxidase. Mutation of this residue to phenylalanine results in a 6-fold decrease in the k(cat) value and the k(cat)/K(m) value for oxygen due to a comparable decrease in the rate constant for flavin reduction. This moderate change is not consistent with this residue forming a tyrosyl radical during catalysis.  相似文献   

11.
Fan F  Germann MW  Gadda G 《Biochemistry》2006,45(6):1979-1986
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine via two sequential FAD-dependent reactions in which betaine aldehyde is formed as an intermediate. The chemical mechanism for the oxidation of choline catalyzed by choline oxidase was recently elucidated by using kinetic isotope effects [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 2067-2074]. In this study, the oxidation of betaine aldehyde has been investigated by using spectroscopic and kinetic analyses with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. The pH dependence of the kcat/Km and kcat values with betaine aldehyde showed that a catalytic base with a pKa of approximately 6.7 is required for betaine aldehyde oxidation. Complete reduction of the enzyme-bound flavin was observed in a stopped-flow spectrophotometer upon anaerobic mixing with betaine aldehyde or choline at pH 8, with similar k(red) values > or = 48 s(-1). In contrast, only 10-26% of the enzyme-bound flavin was reduced by 3,3-dimethylbutyraldehyde between pH 6 and 10. Furthermore, this compound acted as a competitive inhibitor versus choline. NMR spectroscopic analyses indicated that betaine aldehyde exists predominantly (99%) as a diol form in aqueous solution. In contrast, the thermodynamic equilibrium for 3,3-dimethylbutyraldehyde favors the aldehyde (> or = 65%) over the hydrated form in the pH range from 6 to 10. The keto species of 3,3-dimethylbutyraldehyde is reactive toward enzymic nucleophiles, as suggested by the kinetic data with NAD+-dependent yeast aldehyde dehydrogenase. The data presented suggest that choline oxidase utilizes the hydrated species of the aldehyde as substrate in a mechanism for aldehyde oxidation in which hydride transfer is triggered by an active site base.  相似文献   

12.
Lee JE  Raines RT 《Biochemistry》2003,42(39):11443-11450
Onconase (ONC), a homologue of ribonuclease A (RNase A), is in clinical trials for the treatment of cancer. ONC possesses a conserved active-site catalytic triad, which is composed of His10, Lys31, and His97. The three-dimensional structure of ONC suggests that two additional residues, Lys9 and an N-terminal lactam formed from a glutamine residue (Pca1), could also contribute to catalysis. To determine the role of Pca1, Lys9, and Lys31 in the function of ONC, site-directed mutagenesis was used to replace each with alanine. Values of k(cat)/K(M) for the variants were determined with a novel fluorogenic substrate, which was designed to match the nucleobase specificity of ONC and gives the highest known k(cat)/K(M) value for the enzyme. The K9A and K31A variants display 10(3)-fold lower k(cat)/K(M) values than the wild-type enzyme, and a K9A/K31A double variant suffers a >10(4)-fold decrease in catalytic activity. In addition, replacing Lys9 or Lys31 eliminates the antitumoral activity of ONC. The side chains of Pca1 and Lys9 form a hydrogen bond in crystalline ONC. Replacing Pca1 with an alanine residue lowers the catalytic activity of ONC by 20-fold. Yet, replacing Pca1 in the K9A variant enzyme does not further reduce catalytic activity, revealing that the function of the N-terminal pyroglutamate residue is to secure Lys9. The thermodynamic cycle derived from k(cat)/K(M) values indicates that the Pca1...Lys9 hydrogen bond contributes 2.0 kcal/mol to the stabilization of the rate-limiting transition state during catalysis. Finally, binding isotherms with a substrate analogue indicate that Lys9 and Lys31 contribute little to substrate binding and that the low intrinsic catalytic activity of ONC originates largely from the low affinity of the enzyme for its substrate. These findings could assist the further development of ONC as a cancer chemotherapeutic.  相似文献   

13.
J R Miller  D E Edmondson 《Biochemistry》1999,38(41):13670-13683
Monoamine oxidase A (MAO A) plays a central role in the oxidation of amine neurotransmitters. To investigate the structure and mechanism of this enzyme, recombinant human liver MAO A was expressed and purified from Saccharomyces cerevisiae. Anaerobic titrations of the enzyme require only 1 mol of substrate per mole of enzyme-bound flavin for complete reduction. This demonstrates that only one redox-active group (i.e., the covalent FAD cofactor) is involved in catalysis. The reaction rates and binding affinities of 17 para-substituted benzylamine analogues with purified MAO A were determined by steady state and stopped flow kinetic experiments. For each substrate analogue that was tested, the rates of steady state turnover (k(cat)) and anaerobic flavin reduction (k(red)) are similar in value. Deuterium kinetic isotope effects on k(cat), k(red), k(cat)/K(m), and k(red)/K(s) with alpha, alpha-[(2)H]benzylamines are similar for each substrate analogue that was tested and range in value from 6 to 13, indicating that alpha-C-H bond cleavage is rate-limiting in catalysis. Substrate analogue dissociation constants determined from reductive half-reaction experiments as well as from steady state kinetic isotope effect data [Klinman, J. P., and Matthews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] are in excellent agreement. Quantitative structure-activity relationship (QSAR) analysis of dissociation constants shows that the binding of para-substituted benzylamine analogues to MAO A is best correlated with the van der Waals volume of the substituent, with larger substituents binding most tightly. The rate of para-substituted benzylamine analogue oxidation and/or substrate analogue-dependent flavin reduction is best correlated with substituent electronic effects (sigma). Separation of the electronic substituent parameter (sigma) into field-inductive and resonance effects provides a more comprehensive treatment of the electronic correlations. The positive correlation of rate with sigma (rho approximately 2.0) suggests negative charge development at the benzyl carbon position occurs and supports proton abstraction as the mode of alpha-C-H bond cleavage. These results are discussed in terms of several mechanisms proposed for MAO catalysis and with previous structure-activity studies published with bovine liver MAO B [Walker, M. C., and Edmondson, D. E. (1994) Biochemistry 33, 7088-7098].  相似文献   

14.
Venci D  Zhao G  Jorns MS 《Biochemistry》2002,41(52):15795-15802
Nikkomycin antibiotics are potent inhibitors of chitin synthase, effective as therapeutic antifungal agents in humans and easily degradable insecticides in agriculture. NikD is a novel flavoprotein that catalyzes the oxidation of Delta(1)- or Delta(2)-piperideine-2-carboxylate, a key step in the biosynthesis of nikkomycin antibiotics. The resulting dihydropicolinate product may be further oxidized by nikD or converted to picolinate in a nonenzymic reaction. Saturated nitrogen heterocycles (L-pipecolate, L-proline) and 3,4-dehydro-L-proline act as alternate substrates. The ability of nikD to oxidize 3,4-dehydro-L-proline, but not 1-cyclohexenoate, suggests that the enzyme is specific for the oxidation of a carbon-nitrogen bond. An equivalent reaction is possible with the enamine (Delta(2)), but not the imine (Delta(1)), form of the natural piperideine-2-carboxylate substrate. Apparent steady-state kinetic parameters for the reaction of nikD with Delta(1)- or Delta(2)-piperideine-2-carboxylate (k(cat) = 64 min(-1); K(m) = 5.2 microM) or 3,4-dehydro-L-proline (k(cat) = 18 min(-1); K(m) = 13 mM) were determined in air-saturated buffer by measuring hydrogen peroxide formation in a coupled assay. NikD appears to be a new member of the monomeric sarcosine oxidase (MSOX) family of amine oxidizing enzymes. The enzyme contains 1 mol of flavin adenine dinucleotide (FAD) covalently linked to Cys321. The covalent flavin attachment site and two residues that bind substrate carboxylate in MSOX are conserved in nikD. NikD, however, exhibits an unusual long-wavelength absorption band, attributed to charge-transfer interaction between FAD and an ionizable (pK(a) = 7.3) active-site residue. Similar long-wavelength absorption bands have been observed for flavoproteins containing an active site cysteine or cysteine sulfenic acid. Interestingly, Cys273 in nikD aligns with an active-site histidine in MSOX (His269) that is, otherwise, a highly conserved residue within the MSOX family.  相似文献   

15.
Ghanem M  Fan F  Francis K  Gadda G 《Biochemistry》2003,42(51):15179-15188
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine, with molecular oxygen acting as primary electron acceptor. Recently, the recombinant enzyme expressed in Escherichia coli was purified to homogeneity and shown to contain FAD in a mixture of oxidized and anionic semiquinone redox states [Fan et al. (2003) Arch. Biochem. Biophys., in press]. In this study, methods have been devised to convert the enzyme-bound flavin semiquinone to oxidized FAD and vice versa, allowing characterization of the resulting forms of choline oxidase. The enzyme-bound oxidized flavin showed typical UV-vis absorbance peaks at 359 and 452 nm (with epsilon(452) = 11.4 M(-1) cm(-1)) and emitted light at 530 nm (with lambda(ex) at 452 nm). The affinity of the enzyme for sulfite was high (with a K(d) value of approximately 50 microM at pH 7 and 15 degrees C), suggesting the presence of a positive charge near the N(1)C(2)=O locus of the flavin. The enzyme-bound anionic flavin semiquinone was unusually insensitive to oxygen or ferricyanide at pH 8 and showed absorbance peaks at 372 and 495 nm (with epsilon(372) = 19.95 M(-1) cm(-1)), maximal fluorescence emission at 454 nm (with lambda(ex) at 372 nm), circular dichroic signals at 370 and 406 nm, and an ESR peak-to-peak line width of 13.9 G. Both UV-vis absorbance studies on the enzyme under turnover with choline and steady-state kinetic data with either choline or betaine aldehyde were consistent with the flavin semiquinone being not involved in catalysis. The pH dependence of the kinetic parameters at varying concentrations of both choline and oxygen indicated that a catalytic base is required for choline oxidation but not for oxygen reduction and that the order of the kinetic steps involving substrate binding and product release is not affected by pH.  相似文献   

16.
Choline oxidase catalyzes the oxidation of choline to glycine betaine, a compatible solute that accumulates in pathogenic bacteria and plants so they can withstand osmotic and temperature stresses. The crystal structure of choline oxidase was determined and refined to a resolution of 1.86 A with data collected at 100 K using synchrotron X-ray radiation. The structure reveals a covalent linkage between His99 Nepsilon2 and FAD C8M atoms, and a 123 A3 solvent-excluded cavity adjacent to the re face of the flavin. A hypothetical model for choline docked into the cavity suggests that several aromatic residues and Glu312 may orient the cationic substrate for efficient catalysis. The role of the negative charge on Glu312 was investigated by engineering variant enzymes in which Glu312 was replaced with alanine, glutamine, or aspartate. The Glu312Ala enzyme was inactive. The Glu312Gln enzyme exhibited a Kd value for choline at least 500 times larger than that of the wild-type enzyme. The Glu312Asp enzyme had a kcat/KO2 value similar to that of the wild-type enzyme but kcat and kcat/Km values that were 230 and 35 times lower, respectively, than in the wild-type enzyme. These data are consistent with the spatial location of the negative charge on residue 312 being important for the oxidation of the alcohol substrate. Solvent viscosity and substrate kinetic isotope effects suggest the presence of an internal equilibrium in the Glu312Asp enzyme prior to the hydride transfer reaction. Altogether, the crystallographic and mechanistic data suggest that Glu312 is important for binding and positioning of the substrate in the active site of choline oxidase.  相似文献   

17.
Li M  Binda C  Mattevi A  Edmondson DE 《Biochemistry》2006,45(15):4775-4784
Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.  相似文献   

18.
We investigated the effect of compatible and non-compatible osmolytes in combination with macromolecular crowding on the kinetics of yeast hexokinase. This was motivated by the fact that almost all studies concerning the osmolyte effects on enzyme activity have been performed in diluted buffer systems, which are far from the physiological conditions within cells, where the cytosol contains several hundred mg protein ml(-1). Four organic (glycerol, betaine, TMAO and urea) and one inorganic (NaCl) osmolyte were tested. It was concluded that the effect of compatible osmolytes (glycerol, betaine and TMAO) on V(max) and K(M) was practically equivalent in pure buffer and in 200-250 mg BSA ml(-1) supporting the view that these small organic osmolytes do minimal perturbance on enzyme function in physiological solutions. The effect of urea on enzyme kinetics was not independent of protein concentration, since the presence of 250 mg BSA ml(-1) partly compensated the perturbing effect of urea. Even though the organic osmolytes glycerol, betaine and TMAO are generally considered compatible with enzyme function, especially glycerol did have a significant effect on hexokinase kinetics, decreasing both k(cat), K(M) and k(cat)/K(M). The osmolytes decreased k(cat)/K(M) in the order: NaCl>Urea>TMAO/glycerol>betaine. For the organic osmolytes this order correlates with the degree of exclusion from protein-water interfaces. Thus, the stronger the exclusion the weaker the perturbing effects on k(cat)/K(M).  相似文献   

19.
Ralph EC  Fitzpatrick PF 《Biochemistry》2005,44(8):3074-3081
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of secondary amino acids such as N-methyltryptophan or N-methylglycine (sarcosine). MTOX is one of several flavin-dependent amine oxidases whose chemical mechanism is still debated. The kinetic properties of MTOX with the slow substrate sarcosine were determined. Initial rate data are well-described by the equation for a ping-pong kinetic mechanism, in that the V/K(O)()2 value is independent of the sarcosine concentration at all accessible concentrations of oxygen. The k(cat)/K(sarc) pH profile is bell-shaped, with pK(a) values of 8.8 and about 10; the latter value matches the pK(a) value of the substrate nitrogen. The k(cat) pH profile exhibits a single pK(a) value of 9.1 for a group that must be unprotonated for catalysis. There is no significant solvent isotope effect on the k(cat)/K(sarc) value. With N-methyl-(2)H(3)-glycine as the substrate, there is a pH-independent kinetic isotope effect on k(cat), k(cat)/K(sarc), and the rate constant for flavin reduction, with an average value of 7.2. Stopped-flow spectroscopy with both the protiated and deuterated substrate failed to detect any intermediates between the enzyme-substrate complex and the fully reduced enzyme. These results are used to evaluate proposed chemical mechanisms.  相似文献   

20.
The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction. Each reductive half-reaction is followed by an oxidative half-reaction where the reduced flavin is oxidized by oxygen. Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme. The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of a hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme. Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions. This is accompanied by a significant decrease in the overall rate of turnover with choline. Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号