首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sepharose-bound tetrameric, dimeric and monomeric forms of yeast glyceraldehyde-3-phosphate dehydrogenase were prepared, as well as immobilized hybrid species containing (by selective oxidation of an active center cysteine residue with H2O2) one inactivated subunit per tetramer or dimer. The catalytic properties of these enzyme forms were compared in the forward reaction (glyceraldehyde-3-phosphate oxidation) and reverse reaction (1,3-bisphosphoglycerate reductive dephosphorylation) under steady-state conditions. In the reaction of glyceraldehyde-3-phosphate oxidation, immobilized monomeric and tetrameric forms exhibited similar specific activities. The hybrid-modified dimer contributed on half of the total activity of a native dimer. The tetramer containing one modified subunit possessed 75% of the activity of an unmodified tetramer. In the reaction of 1,3-bisphosphoglycerate reductive dephosphorylation, the specific activity of the monomeric enzyme species was nearly twice as high as that of the tetramer, suggesting that only one-half of the active centers of the oligomer were acting simultaneously. Subunit cooperativity in catalysis persisted in an isolated dimeric species. The specific activity of a monomer associated with a peroxide-inactivated monomer in a dimer was equal to that of an isolated monomeric species and twice as high as that of a native immobilized dimer. The specific activity of subunits associated with a peroxide-inactivated subunit in a tetramer did not differ from that of a native immobilized tetramer; this indicates that interdimeric interactions are involved in catalytic subunit cooperativity. A complex was formed between the immobilized glyceraldehyde-3-phosphate dehydrogenase and soluble phosphoglycerate kinase. Three monomers of phosphoglycerate kinase were bound per tetramer of the dehydrogenase and one per dimer. Evidence is presented that if the reductive dephosphorylation of 1,3-bisphosphoglycerate proceeds in the phosphoglycerate kinase - glyceraldehyde-3-phosphate dehydrogenase complex, all active sites of the latter enzyme act independently, i.e. subunit cooperativity is abolished.  相似文献   

2.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

3.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that catalyses conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. ATP has been found to have an inhibitory effect on this enzyme. To establish the interaction between the enzyme and ATP, a fluorescence technique was used. Fluorescence quenching in the presence of ATP suggests cooperative binding of ATP to the enzyme (the Hill obtained coefficient equals 2.78). The interaction between glyceraldehyde-3-phosphate dehydrogenase and ATP may control not only glycolysis but other activities of this enzyme, such as binding to the cytoskeleton.  相似文献   

5.
Mild oxidation of glyceraldehyde-3-phosphate dehydrogenase in the presence of hydrogen peroxide leads to oxidation of some of the active site cysteine residues to sulfenic acid derivatives, resulting in the induction of acylphosphatase activity. The reduced active sites of the enzyme retain the ability to oxidize glyceraldehyde-3-phosphate yielding 1,3-diphosphoglycerate, while the oxidized active sites catalyze irreversible cleavage of 1,3-diphosphoglycerate. It was assumed that the oxidation of glyceraldehyde-3-phosphate dehydrogenase by different physiological oxidants must accelerate glycolysis due to uncoupling of the reactions of oxidation and phosphorylation. It was shown that the addition of hydrogen peroxide to the mixture of glycolytic enzymes or to the muscle extract increased production of lactate, decreasing the yield of ATP. A similar effect was observed in the presence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase catalyzing irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate. A role of glyceraldehyde-3-phosphate dehydrogenase in regulation of glycolysis is discussed.  相似文献   

6.
The steady-state reactant levels of triose-phosphate isomerase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system were examined in guinea-pig cardiac muscle. Key glycolytic intermediates, including glyceraldehyde 3-phosphate were directly measured and compared with those of creatine kinase. Non-working Langendorff hearts as well as isolated working hearts were perfused with 5 mM glucose (plus insulin) under normoxia conditions to maintain lactate dehydrogenase near-equilibrium. The cytosolic phosphorylation potential ([ATP]/([ADP].[Pi])) was derived from creatine kinase and the free [NAD+]/([NADH].[H+]) ratio from lactate dehydrogenase. In Langendorff hearts glycolysis was varied from near-zero flux (hyperkalemic cardiac arrest) to higher than normal flux (normal and maximum catecholamine stimulation). The triose-phosphate isomerase was near-equilibrium only in control or potassium-arrested Langendorff hearts as well as in postischemic 'stunned' hearts. However, when glycolytic flux increased due to norepinephrine or due to physiological pressure-volume work the enzyme was displaced from equilibrium. The alternative phosphorylation ratio [ATP]'/([ADP]).[Pi]) was derived from the magnesium-dependent glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system assigning free magnesium different values in the physiological range (0.1-2.0 mM). As predicted, [ATP]/([ADP].[Pi]) and [ATP]'/([ADP]'.[Pi]') were in excellent agreement when glycolysis was virtually halted by hyperkalemic arrest (flux approximately 0.2 mumol C3.min-1.g dry mass-1). However, the equality between the two phosphorylation ratios was not abolished upon resumption of spontaneous beating and also not during adrenergic stimulation (flux approximately 5-14 mumol C3.min-1.g dry mass-1). In contrast, when flux increased due to transition from no-work to physiological pressure-volume work (rate increase from approximately 3 to 11 mumol C3.min-1.g dry mass-1), the two ratios were markedly different indicating disequilibrium of the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase. Only during adrenergic stimulation or postischemic myocardial 'stunning', not due to hydraulic work load per se, glyceraldehyde-3-phosphate levels increased from about 4 microM to greater than or equal to 16 microM. Thus the guinea-pig cardiac glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system can realize the potential for near-equilibrium catalysis at significant flux provided glyceraldehyde-3-phosphate levels rise, e.g., due to 'stunning' or adrenergic hormones.  相似文献   

7.
A general method for the assay of enzymes which produce ATP, or are susceptible to be coupled to ATP-producing enzymes, is described. We have applied it to the assay of glyceraldehyde-3-phosphate dehydrogenase and enolase. For these enzymes, the product of the reaction, 1,3-bisphosphoglycerate or phosphoenolpyruvate, were coupled to ADP and either phosphoglycerate kinase or pyruvate kinase, respectively. The ATP formed in both cases is used by hexokinase plus labeled glucose to produce labeled glucose 6-phosphate which is quantitatively separated in small Dowex 1 columns and measured by liquid scintillation spectrometry. The conditions described permitted the detection of 0.1 mU of glyceraldehyde-3-phosphate dehydrogenase or enolase. As a further example of the sensitivity of the radioassay, effluents of a CM-cellulose column charged with an extract prepared from one single frog oocyte were analyzed and shown to contain a single enolase and two glyceraldehyde-3-phosphate dehydrogenase fractions.  相似文献   

8.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

9.
Rabbit antibodies to rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase, as well as monovalent Fab fragments of these antibodies were coupled to CNBr-activated Sepharose 4B. Rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was then immobilized on a matrix by non-covalent binding to specific antibodies. Immobilized enzyme retains approximately 90% catalytic activity of the soluble dehydrogenase; pH optimum of activity and the Km value observed are changed as compared to the enzyme in solution. Glyceraldehyde-3-phosphate dehydrogenase immobilized on specific antibodies is shown to undergo adenine nucleotide-induced dissociation into dimers. The immobilized dimeric form of the enzyme thus obtained is catalytically active and capable of reassociating with the dimers of apoglyceraldehyde-3-phosphate dehydrogenase added in solution to the suspension of Sepharose.  相似文献   

10.
《BBA》1987,892(2):185-190
The kinetics of the two enzyme phosphoglycerate kinase (EC 2.7.2.3)/NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) couple are negatively cooperative and will also fit a model for two enzymes acting on one substrate. When the chloroplast is illuminated apparent negative cooperativity is reduced; maximal velocity of only one of the two enzymes in the two-enzyme model is increased. Even after light activation the activity of glyceraldehyde-3-phosphate dehydrogenase appears to be too low to support photosynthesis at calculated levels of glycerate-1,3-bisphosphate in isolated chloroplasts (Marques, I.A., Ford, D.M., Muschinek, G. and Anderson, L.E. (1987) Arch. Biochem. Biophys. 252, 458–466). The activity of the coupled reaction is apparently sufficient to support observed rates of CO2 fixation, which suggests that glycerate-1,3-bisphosphate may be channeled from the kinase to the dehydrogenase in vivo.  相似文献   

11.
3-phosphoglycerate kinase from Hydrogenomonas facilis   总被引:3,自引:2,他引:1       下载免费PDF全文
Phosphoglycerate kinase levels in Hydrogenomonas facilis were reasonably constant whether cells were utilizing or synthesizing hexose during growth. Specific enzyme activities (micromoles of 3-phosphoglycerate disappearing per minute per milligram of protein) at 30 C were 0.234, 0.391, 0.300, and 0.229 in the "soluble" fraction derived from cells grown on fructose, lactate, succinate, and glutamate, respectively. The enzyme was purified 300-fold from succinate-grown cells. The final preparation, which was not homogenous but was free from glyceraldehyde-3-phosphate dehydrogenase and adenylate kinase, had a specific activity at 30 C of 90 mumoles of 3-phosphoglycerate per min per mg of protein. K(m) values for adenosine triphosphate (ATP), 3-phosphoglycerate, and Mg(++) were 0.16, 0.83, and 0.4 mm, respectively, at pH 7.4 and 30 C. Adenosine monophosphate (AMP) inhibited 23% at a ratio of AMP to ATP of 2.4, and the possible physiological implications of this inhibition are discussed. No evidence was found for an enzyme which catalyzes ATP-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.  相似文献   

12.
13.
The erythrocytes of 350 pigtailed macaques (Macaca nemestrina) were examined for electrophoretic variation of hemoglobin and 26 enzymes. Seven enzymes showed variation in more than 1% of individuals: phosphoglucose isomerase, phosphoglucomutase-1, soluble NADP-dependent isocitric dehydrogenase, peptidase A, peptidase C, 2,3-diphosphoglycerate mutase, and acid phosphatase. Variation with lesser frequency was found in soluble glutamic-oxalacetic transaminase, phosphoglycerate kinase, lactic dehydrogenase, and hemoglobin. Only eight samples were tested for esterase D, and one of these had a variant phenotype. Enzymes with no clear variation were adenylate kinase, adenosine deaminase, phosphofructokinase, hexokinase, pyruvate kinase, glyceraldehyde 3-phosphate dehydrogenase, aldolase, phosphoglycerate mutase, phosphopyruvate hydratase (enolase), phosphoglucomutase-3, and superoxide dismutase. There was father-to-son transmission of PGI, PGM-1, peptidase C, 6PGD, 2,3-DPGAM, NADP-ICD, and acid phosphatase variants, suggesting that these loci are autosomal as in man.  相似文献   

14.
1. The kinetics of 1,3-bisphosphoglycerate binding to glyceraldehyde-3-phosphate dehydrogenase have been examined by stopped-flow techniques in the absence and presence of phosphoglycerate kinase, using enzyme concentrations in the range 0.5-40 microM. Rate and equilibrium constant estimates for the interaction of the ligand with the two enzymes are reported. 2. The kinetics of ligand transfer from the binary complex of bisphosphoglycerate and phosphoglycerate kinase to the binary complex of NAD+ and glyceraldehyde-3-phosphate dehydrogenase conform excellently to the predictions of a standard free-diffusion mechanism and exhibit no detectable contributions from a mechanism of direct (channelized) transfer of bisphosphoglycerate between the two enzymes. 3. Previously reported evidence that the binary complex of bisphosphoglycerate and phosphoglycerate kinase may act (in the presence of NADH) as a substrate for glyceraldehyde-3-phosphate dehydrogenase according to Michaelis-Menten kinetics is based on a misinterpretation of the experimental observations that can be attributed to neglect of the autocatalytic effect of NAD+ produced during the reaction. Experiments performed under conditions where the autocatalytic effect of NAD+ is eliminated provide clear evidence that the kinetics of utilization of the kinase-bisphosphoglycerate complex for enzymic NADH reduction are consistent with prior dissociation of the complex according to a free-diffusion mechanism of metabolite transfer and incompatible with a mechanism of direct metabolite transfer. 4. A kinetic argument is presented which renders implausible the very idea that direct metabolite transfer between 'soluble' consecutive enzymes in metabolic pathways may offer any catalytic advantages in comparison to metabolite transfer by free diffusion. A mechanism of direct metabolite transfer seems intuitively attractive only because one tends to disregard the diffusional processes required to bring the consecutive enzymes together and to separate them when the transfer has been completed. Direct metabolite transfer would be expected to be catalytically advantageous only in tightly bound multienzyme complexes showing no kinetically significant tendency to dissociate. 5. It is concluded that mechanisms of direct metabolite transfer have not been convincingly demonstrated to apply, nor are they likely to apply, between 'soluble' consecutive enzymes in metabolic pathways, at least not in the glycolytic sequence of reactions.  相似文献   

15.
K M Brindle 《Biochemistry》1988,27(16):6187-6196
31P NMR magnetization-transfer measurements were used to measure flux between inorganic phosphate and ATP in the reactions catalyzed by phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase in anaerobic cells of the yeast Saccharomyces cerevisiae. Flux between ATP and Pi and glucose consumption and ethanol production were measured in cells expressing different levels of phosphoglycerate kinase activity. Overexpression of the enzyme was obtained by transforming the cells with a multicopy plasmid containing the phosphoglycerate kinase coding sequence and portions of the promoter element. Fluxes were also measured in cells in which the glyceraldehyde-3-phosphate dehydrogenase activity had been lowered by limited incubation with iodoacetate. These measurements showed that both enzymes have low flux control coefficients for glycolysis but that phosphoglycerate kinase has a relatively high flux control coefficient for the ATP----Pi exchange catalyzed by the two enzymes. The Pi----ATP exchange velocities observed in the cell were shown to be similar to those displayed by the isolated enzymes in vitro under conditions designed to mimic those in the cell with respect to the enzyme substrate concentrations.  相似文献   

16.
The steady-state kinetics of 1,3-bisphosphoglycerate formation through the action of phosphoglycerate kinase on 3-phosphoglycerate and ATP have been examined. The results show that initial velocities determined by the standard method of coupling bisphosphoglycerate production to NADH reduction in the presence of glyceraldehyde-3-phosphate dehydrogenase do not differ significantly from those determined in the absence of the latter enzyme. This observation invalidates the proposal that bisphosphoglycerate dissociation from phosphoglycerate kinase is much too slow to account for the high rates of phosphoglycerate turnover observed in the coupled two-enzyme system. The capacity for rapid bisphosphoglycerate production and release is an intrinsic catalytic property of phosphoglycerate kinase that does not require the presence of other enzymes or the involvement of a mechanism of channelized (non-diffusional) transfer of bisphosphoglycerate from the producing enzyme to the consuming one.  相似文献   

17.
Influence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) on glycolysis was investigated. The addition of GAPN-which oxidizes glyceraldehyde-3-phosphate directly to the 3-phosphoglyceric acid-led to the strong increase in the rate of lactate accumulation in the rat muscle extract with low ADP content. The lactate accumulation was also observed in the presence of GAPN in rat muscle extract, which contained only ATP and no ADP. This can be the evidence of the "futile cycle" stimulated by GAPN. Here ADP can be regenerated from ATP by the phosphoglycerate kinase reaction. The high resistance of GAPN from Streptococcus mutans towards inactivation by natural oxidant-H(2)O(2) was showed. This feature distinguishes GAPN from phosphorylating glyceraldehyde-3-phosphate dehydrogenase, which is very sensitive to modification by hydrogen peroxide. A possible role of the oxidants and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in the regulation of glycolysis is discussed.  相似文献   

18.
Physical interaction between rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase was detected by means of matrix immobilization technique. Glyceraldehyde-3-phosphate dehydrogenase covalently bound to CNBr-activated Sepharose 4B was capable of forming a complex with soluble lactate dehydrogenase with a stoichiometry of 0.8 mole of lactate dehydrogenase per mole of glyceraldehyde-3-phosphate dehydrogenase and KD of 0.385 microM at pH 6.5. The bienzyme association weakened when pH changed to 7.0 (the KD increased to 1.25 microM).  相似文献   

19.

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.

  相似文献   

20.
The enzyme ATP-3-phospho-D-glycerate-1-phosphotransferase (EC 2.7.2.3) (phosphoglycerate kinase) has been isolated from human red cells in crystalline form by a modification of the method of Yoshida and Watanabe (1972) J. Biol. Chem. 247, 440-445). The crystalline enzyme was further purified by electrofocusing using carrier ampholytes (pH 7-9). The isoelectric point of phosphoglycerate kinase was estimated to be 8.75. The specific activity of purified phosphoglycerate kinase from electrofocusing was 2200 units per mg of protein at pH 8.3 (37 degrees C). Enzyme activity was assayed in the forward direction leading from 1,3-diphosphoglycerate to a 3-phosphoglycerate using a fluorimetric procedure for NAD-coupled enzymes for the measurement of the reaction rate at very low substrate concentrations. The auxiliary indicator enzymes were added in excess to yield true initial velocity kinetics, i.e. with no time lag upon addition of substrate (1,3-diphosphoglycerate). This was established theoretically using a mathematical model and confirmed experimentally. Further phosphoglycerate kinase was shown to be the rate-limiting step when the assay conditions were varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号