首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The wide host range of Xylella fastidiosa (Xf) indicates the existence of yet uncharacterized virulence mechanisms that help pathogens to overcome host defences. Various bioinformatics tools combined with prediction of the functions of putative virulence proteins are valuable approaches to study microbial pathogenicity. We collected a number of putative effectors from three Xf strains belonging to different subspecies: Temecula-1 (subsp. fastidiosa), CoDiRO (subsp. pauca), and Ann-1 (subsp. sandyi). We designed an in planta Agrobacterium-based expression system that drives the expressed proteins to the cell apoplast, in order to investigate their ability to activate defence in Nicotiana model plants. Multiple Xf proteins differentially elicited cell death-like phenotypes in different Nicotiana species. These proteins are members of different enzymatic groups: (a) hydrolases/hydrolase inhibitors, (b) serine proteases, and (c) metal transferases. We also classified the Xf proteins according to their sequential and structural similarities via the I-TASSER online tool. Interestingly, we identified similar proteins that were able to differentially elicit cell death in different cultivars of the same species. Our findings provide a basis for further studies on the mechanisms that underlie both defence activation in Xf resistant hosts and pathogen adaptation in susceptible hosts.  相似文献   

2.
Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X. fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X. fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X. fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X. fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.  相似文献   

3.
Summary The nucleotide sequence of engD, an endo--1,4-glucanase gene from Clostridium cellulovorans was determined (Genbank Accession No. M37434). The COON-terminal part of the gene product, EngD, contained a Thr-Thr-Pro repeated sequence followed by a region that has homology to the exoglucanase of Cellulomonas fimi. EngD and EngB, another C. cellulovorans endoglucanase, show 75% amino acid sequence homology at their NH2-termini, in contrast to their carboxyterminal domains which show no homology. EngD had endoglucanase activity on carboxymethylcellulose (CMC), cellobiosidase activity on p-nitrophenyl-cellobioside (p-NPC), and partial hydrolytic activity on crystalline cellulose (Avicel), while EngB showed hydrolytic activity against only CMC. Chimeric proteins between EngB and EngD were constructed by exchanging the non-homologous COOH-terminal regions. Chimeric proteins that contained the NH2-terminus of EngD retained cellobiosidase activity but chimeras with the EngB NH2-terminus showed no cellobiosidase activity. Hydrolysis of crystalline cellulose (Avicelase activity) was observed only with the enzyme containing the EngD NH2-terminus and EngD COOH-terminus.  相似文献   

4.
Xylella fastidiosa causes many important plant diseases including Pierces disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the phage is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.  相似文献   

5.
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.  相似文献   

6.
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquensX. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.  相似文献   

7.
Summary The nucleotide sequence of a 2.314 kb DNA segment containing a gene (cedl) expressing cellodextrinase activity from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from a weak internal promoter in Escherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a GTG start codon. The complete amino acid sequence (547 residues) was deduced and homology was demonstrated with the Clostridium thermocellum endoglucanase D (EGD), Pseudomonas fluorescens var. cellulose endoglucanase (EG), and a cellulase from the avocado fruit (Persea americana). The ced1 gene product Cedl showed cellodextrinase activity and rapidly hydrolysed short-chain cellodextrins to yield either cellobiose or cellobiose and glucose as end products. The Cedl enzyme released cellobiose from p-nitrophenyl--d-cellobioside and the enzyme was not inhibited by methylcellulose, an inhibitor of endoglucanase activity. Although the major activity of the Cedl enzyme was that of a cellodextrinase it also showed limited activity against endoglucanase specific substrates [carboxymethylcellulose (CMC), lichenan, laminarin and xylan]. Analysis by SDS-polyacrylamide gel electrophoresis with incorporated CMC showed a major activity band with an apparent M r of approximately 61000. The calculated M r of the ced1 gene product was 61023.Abbreviations Ap ampicillin - ced1 gene coding for Ced1 - Ced1 cellodextrinase from B. fibrisolvens - CMC carboxymethylcellulose - LB Luria Bertani - ORF open reading frame - pNPC p-nitrophenyl--d-cellobioside - PC phosphate citrate - HCA hydrophobic cluster analysis  相似文献   

8.
Cytophaga hutchinsonii is a Gram-negative gliding bacterium which can efficiently degrade crystalline cellulose by an unknown strategy. Genomic analysis suggests the C. hutchinsonii genome lacks homologs to an obvious exoglucanase that previously seemed essential for cellulose degradation. One of the putative endoglucanases, CHU_2103, was successfully expressed in Escherichia coli JM109 and identified as a processive endoglucanase with transglycosylation activity. It could hydrolyze carboxymethyl cellulose (CMC) into cellodextrins and rapidly decrease the viscosity of CMC. When regenerated amorphous cellulose (RAC) was degraded by CHU_2103, the ratio of the soluble to insoluble reducing sugars was 3.72 after 3 h with cellobiose and cellotriose as the main products, indicating that CHU_2103 was a processive endoglucanase. CHU_2103 could degrade cellodextrins of degree of polymerization ≥3. It hydrolyzed p-nitrophenyl β-d-cellodextrins by cutting glucose or cellobiose from the non-reducing end. Meanwhile, some larger-molecular-weight cellodextrins could be detected, indicating it also had transglycosylation activity. Without carbohydrate-binding module (CBM), CHU_2103 could bind to crystalline cellulose and acted processively on it. Site-directed mutation of CHU_2103 demonstrated that the conserved aromatic amino acid W197 in the catalytic domain was essential not only for its processive activity, but also its cellulose binding ability.  相似文献   

9.
A pair of PCR primers, QH-OLS05/QH-OLS08 specific for strains of Xylella fastidiosa causing oleander leaf scorch was developed. The primers were designed according to a DNA sequence of a randomly amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) product unique to oleander strains. The PCR assay using primer pair QH-OLS05/QH-OLS08 allowed quick and simple detection and identification of oleander strains in cultured bacterium and infected plant samples. The assay also can be applied to insect samples. Specific detection and identification of oleander strains of X. fastidiosa by PCR is useful for epidemiologic and etiologic studies of oleander leaf scorch by identifying what plants and insect vectors harbor or carry this particular strain of X. fastidiosa, especially in locations where mixed natural infections by oleander and other strains of X. fastidiosa occur.  相似文献   

10.
Xylella fastidiosa isolate 8.1.b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of S?o Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants tested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic. Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil. Received: 1 February 1999 / Accepted: 1 April 1999  相似文献   

11.
By cloning and sequencing specific randomly amplified polymorphic DNA (RAPD) products, we have developed pairs of PCR primers that can be used to detect Xylella fastidiosa in general, and X. fastidiosa that cause citrus variegated chlorosis (CVC) specifically. We also identified a CVC-specific region of the X. fastidiosa genome that contains a 28-nucleotide insertion, and single base changes that distinguish CVC and grape X. fastidiosa strains. When using RAPD products to develop specific PCR primers, we found it most efficient to screen for size differences among RAPD products rather than presence/absence of a specific RAPD band.  相似文献   

12.
The plant pathogen Xylella fastidiosa is the causative agent of a number of diseases of economically important crops, including Pierces disease that affects grapevines. Using a commercially available antibody specific for X. fastidiosa, we have established a protocol for microscopic identification of the bacterium by indirect immunofluorescence. This antibody clearly labels an uncharacterized antigen concentrated at a single pole of X. fastidiosa cells, but does not react with a non-Xylella control. This technique was also performed successfully on xylem exudates from several different plant genera and correlated well with standard enzyme-linked immunosorbent assay tests. These results establish a novel method for in situ assessment of X. fastidiosa infection from host plants.  相似文献   

13.
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device’s internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ~4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.  相似文献   

14.
Xylella fastidiosa is a pathogen that causes leaf scorch and related diseases in over 100 plant species, including Pierce's disease in grapevines (PD), phony peach disease (PP), plum leaf scald (PLS), and leaf scorch in almond (ALS), oak (OAK), and oleander (OLS). We used a high-resolution DNA sequence approach to investigate the evolutionary relationships, geographic variation, and divergence times among the X. fastidiosa isolates causing these diseases in North America. Using a large data set of 10 coding loci and 26 isolates, the phylogeny of X. fastidiosa defined three major clades. Two of these clades correspond to the recently identified X. fastidiosa subspecies piercei (PD and some ALS isolates) and X. fastidiosa subsp. multiplex (OAK, PP, PLS, and some ALS isolates). The third clade grouped all of the OLS isolates into a genetically distinct group, named X. fastidiosa subsp. sandyi. These well-differentiated clades indicate that, historically, X. fastidiosa has been a clonal organism. Based on their synonymous-site divergence (~3%), these three clades probably originated more than 15,000 years ago, long before the introduction of the nonnative plants that characterize most infections. The sister clades of X. fastidiosa subsp. sandyi and X. fastidiosa subsp. piercei have synonymous-site evolutionary rates 2.9 times faster than X. fastidiosa subsp. multiplex, possibly due to generation time differences. Within X. fastidiosa subsp. multiplex, a low level (~0.1%) of genetic differentiation indicates the recent divergence of ALS isolates from the PP, PLS, and OAK isolates due to host plant adaptation and/or allopatry. The low level of variation within the X. fastidiosa subsp. piercei and X. fastidiosa subsp. sandyi clades, despite their antiquity, suggests strong selection, possibly driven by host plant adaptation.  相似文献   

15.
A genome-wide search was performed to identify simple sequence repeat (SSR) loci among the available sequence databases from four strains of Xylella fastidiosa (strains causing Pierce's disease, citrus variegated chlorosis, almond leaf scorch, and oleander leaf scorch). Thirty-four SSR loci were selected for SSR primer design and were validated in PCR experiments. These multilocus SSR primers, distributed across the X. fastidiosa genome, clearly differentiated and clustered X. fastidiosa strains collected from grape, almond, citrus, and oleander. They are well suited for differentiating strains and studying X. fastidiosa epidemiology and population genetics.  相似文献   

16.
Abstract

A genomic library of Ruminococcus fl avef aciens FD‐1 DNA was constructed using the Escherichia coli bacteriophage λ vector λDASH. A recombinant phage exhibiting activity against both Ostazin brilliant red‐hydroxyethyl cellulose (OBR‐HEC) and carboxymethyl cellulose (CMC) was isolated. This clone (designated FD1‐1) was further analyzed by restriction endonuclease mapping and Southern blot analysis. Substrate specificity data shows that the cloned gene(s) encodes both endoglucanase activity and endoxylanase activity. CMC and xylan zymograms of protein(s) produced by this clone and then separated by non‐denaturing PAGE suggest that the endoglucanase/endoxylanase activities reside on the same polypeptide or protein complex. An additional xylanase product lacking CMCase activity was also detected.  相似文献   

17.
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem‐limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2O2) relative to the wild‐type. In addition, during early stages of grapevine infection, the survival rate was 1000‐fold lower for the oxyR mutant than for the wild‐type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell–cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.  相似文献   

18.
Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiting X. fastidiosa growth, as indicated by low minimum inhibitory concentrations (MICs). In addition, phenolic compounds with different structural features exhibited different anti-Xylella capacities. Particularly, catechol, caffeic acid and resveratrol showed strong anti-Xylella activities. Differential response to phenolic compounds was observed among X. fastidiosa strains isolated from grape and almond. Elucidation of secondary metabolite-based host resistance to X. fastidiosa will have broad implication in combating X. fastidiosa-caused plant diseases. It will facilitate future production of plants with improved disease resistance properties through genetic engineering or traditional breeding approaches and will significantly improve crop yield.  相似文献   

19.
A cellulose-binding protein of 105 kDa (CBP105) from Cellulomonas flavigena was purified and its gene was cloned. CBP105 is a processive endoglucanase with maximum activity on carboxymethyl cellulose (CMC) at pH 7.5 and 60°C. Limited proteolysis suggested that CBP105 is composed of one catalytic domain (CD) and two carbohydrate-binding modules (CBM). The nucleotide sequence of the cbp105 gene (AY729806) indicates that CBP105 is a modular enzyme with a family 9 glycoside hydrolase CD linked to a family 3 CBM, two fibronectin III-like domains and a family 2 CBM. This structural organization may be responsible for CBP105 processive CMC degradation.  相似文献   

20.
Xylella fastidiosa was the first phytopathogen to be completely sequenced, and its genome revealed several interesting features to be used in functional studies. In the present work, the htpX gene, which encodes a protein involved in the heat shock response in other bacteria, was analyzed by RT-PCR by using cells derived from different cultural conditions. This gene was induced after a temperature upshift to 37°C after growth in minimal medium, XDM, but showed constitutive expression in rich medium or in XDM plus plant extracts. Sequences upstream to the htpX gene, containing a putative regulatory region, were also transferred to E. coli, and the thermoregulation was maintained in the new host, since it was constitutively transcribed at 37°C or 45°C in all culture media tested, but not at 28°C in minimal culture medium. The gene was also cloned into the expression vector pET32Xa/LIC, and the expression of the corresponding protein was confirmed by Western blotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号