共查询到20条相似文献,搜索用时 23 毫秒
1.
以1年生合作杨扦插苗为材料,研究了叶面喷施Ca2+通道阻断剂氯化镧(LaCl3)和Ca2+螯合剂EGTA预处理对机械损伤胁迫下合作杨叶片抗氧化酶活性、过氧化氢(H2O2)和丙二醛(MDA)含量以及氧自由基(O2?-)产生速率的影响.结果显示,与对照相比,机械损伤胁迫下合作杨叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等抗氧化酶活性均显著升高,活性氧水平和MDA含量显著增加;外源喷施EGTA和LaCl3降低了机械损伤胁迫下叶片SOD、POD、CAT和APX活性,减缓了O2?-产生速率,H2O2含量和MDA含量显著下降;且EGTA的抑制作用比LaCl3更强.研究表明,机械损伤胁迫诱导的活性氧代谢需要Ca2+的参与,Ca2+和活性氧在植物防御信号传递过程中密切相关;伤害诱导胞外Ca2+内流是胞内Ca2+浓度增加的重要来源. 相似文献
2.
植物活性氧的产生及其作用和危害 总被引:4,自引:0,他引:4
活性氧(ROS)是一类由O2转化而来的自由基或具有高反应活性的离子或分子。植物消耗的O2约有1%在叶绿体、线粒体、过氧化物酶体等多种亚细胞单位中被转化成了ROS。ROS有益或有害取决于它在植物体内的浓度。低浓度的ROS作为第二信使能在植物细胞信号转导途径中介导多种应答反应,高浓度的ROS则引起生物大分子的氧化损伤甚至细胞死亡。植物体内ROS产生和清除之间的平衡十分重要,并由一套有效的酶促和非酶促抗氧化系统来监控。该文主要系统介绍了植物ROS的种类、产生部位、在信号转导中的作用及其对植物细胞造成的主要伤害等方面的研究进展,为利用基因工程手段来提高植物对环境胁迫的抗性提供信息和思路。 相似文献
3.
Heli Havukainen Daniel Münch Anne Baumann Shi Zhong ?yvind Halskau Michelle Krogsgaard Gro V. Amdam 《The Journal of biological chemistry》2013,288(39):28369-28381
Large lipid transfer proteins are involved in lipid transportation and diverse other molecular processes. These serum proteins include vitellogenins, which are egg yolk precursors and pathogen pattern recognition receptors, and apolipoprotein B, which is an anti-inflammatory cholesterol carrier. In the honey bee, vitellogenin acts as an antioxidant, and elevated vitellogenin titer is linked to prolonged life span in this animal. Here, we show that vitellogenin has cell and membrane binding activity and that it binds preferentially to dead and damaged cells. Vitellogenin binds directly to phosphatidylcholine liposomes and with higher affinity to liposomes containing phosphatidylserine, a lipid of the inner leaflet of cell membranes that is exposed in damaged cells. Vitellogenin binding to live cells, furthermore, improves cell oxidative stress tolerance. This study can shed more light on why large lipid transfer proteins have a well conserved α-helical domain, because we locate the lipid bilayer-binding ability of vitellogenin largely to this region. We suggest that recognition of cell damage and oxidation shield properties are two mechanisms that allow vitellogenin to extend honey bee life span. 相似文献
4.
Antonio Macho Rocío Sancho Alberto Minassi Giovanni Appendino Alfons Lawen 《Free radical research》2013,47(6):611-619
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids. 相似文献
5.
植物能感受外界环境信息的刺激,并通过复杂的信号转导体系调节植物特定基因的表达,引起相应的生理生化反应,以适应不断变化的环境条件.研究表明,活性氧作为第二信使参与了植物激素信号转导,本文对其在植物激素信号转导中的作用进行综述. 相似文献
6.
活性氧诱发人类11号染色体基因突变 总被引:1,自引:0,他引:1
对体外产生的和内源性刺激产生的活性氧 (ROS)诱发人类 11号染色体 (Hchr 11)基因突变规律及其突变谱进行研究 .体外羟自由基 (·OH)用过氧化氢 (H2 O2 )与Fe2 + 反应产生 ,并用化学发光(CL)进行相对定量分析 ;内源性ROS用佛波醇酯 (PMA)刺激人外周血白细胞产生 ,并用CL和特异性抗氧化物检测和鉴定 ;用包含单条Hchr 11的人 中国仓鼠卵巢细胞 (AL)为靶 ,经CD59表面抗原抗体筛选突变细胞克隆 ,研究ROS诱发的Hchr 11基因突变 ;突变克隆细胞DNA用Hchr 11上 5种标志基因引物进行多重PCR分析 ,结合琼脂糖凝胶电泳绘制基因突变谱 .结果表明 ,体外ROS可诱发Hchr 11基因突变 ,且·OH诱发基因突变的能力明显强于H2 O2 ,两者的突变谱也存在明显差异 ;PMA可刺激人外周血白细胞产生大量的多种ROS ,并诱发Hchr 11基因突变 ,突变谱综合了H2 O2 和·OH的所有特征 ;一些抗氧化物对内源性产生的ROS诱发Hchr 11基因突变有明显抑制作用 .提示体外和内源性ROS可诱发Hchr 11基因突变 ,不同的活性氧分子诱发的基因突变可能具有特异性 相似文献
7.
植物细胞活性氧种类、代谢及其信号转导 总被引:6,自引:0,他引:6
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。 相似文献
8.
活性氧是细胞代谢中产生的有很强反应活性的分子,易将邻近分子氧化,并参与细胞内多种信号转导途径,对相关生理过程进行调控.自噬是真核细胞通过溶酶体机制对自身组分进行降解再利用的过程,在细胞应激及疾病发生等过程中发挥重要作用.本文对活性氧和自噬相关调节进行分类介绍,根据新近研究进展,从活性氧参与的自噬性死亡、自噬性存活以及线粒体自噬3方面探讨了相关信号转导机制,对活性氧作为信号分子参与的自噬调控途径做一总结和介绍. 相似文献
9.
10.
植物中活性氧的产生及清除机制 总被引:145,自引:1,他引:145
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的保护机制分为酶促和非酶促两类。酶促脱毒系统包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)等。非酶类抗氧化剂包括抗坏血酸、谷胱甘肽、甘露醇和类黄酮。利用基因工程策略增加这些物质在植物体内的含量,从而获得耐逆转基因植物已取得一定的进展。 相似文献
11.
Haruka Yamanashi Osamu Hashizume Hiromichi Yonekawa Kazuto Nakada Jun-Ichi Hayashi 《Experimental Animals》2014,63(4):459-466
Because of the difficulty to exclude possible involvement of nuclear DNA mutations, ithas been a controversial issue whether pathogenic mutations in mitochondrial DNA (mtDNA)and the resultant respiration defects are involved in tumor development. To address thisissue, our previous study generated transmitochondrial mice(mito-mice-ND613997), which possess the nuclear and mtDNA backgrounds derivedfrom C57BL/6J (B6) strain mice except that they carry B6 mtDNA with a G13997A mutation inthe mt-Nd6 gene. Because aged mito-mice-ND613997simultaneously showed overproduction of reactive oxygen species (ROS) in bone marrow cellsand high frequency of lymphoma development, current study examined the effects ofadministrating a ROS scavenger on the frequency of lymphoma development. We usedN-acetylcysteine (NAC) as a ROS scavenger, and showed that NACadministration prevented lymphoma development. Moreover, its administration inducedlongevity in mito-mice-ND613997. The gene expression profiles in bone marrowcells indicated the upregulation of the Fasl gene, which can besuppressed by NAC administration. Given that natural-killer (NK) cells mediate theapoptosis of various tumor cells via enhanced expression of genes encoding apoptoticligands including Fasl gene, its overexpression would reflect thefrequent lymphoma development in bone marrow cells. These observations suggest thatcontinuous administration of an antioxidant would be an effective therapeutics to preventlymphoma development enhanced by ROS overproduction. 相似文献
12.
活性氧信号传导作用的研究进展 总被引:9,自引:0,他引:9
活性氧的信号传导作用已经为大量研究结果所证实,氧化还原修饰靶分子是其信号传导的主要机制.活性氧的信号传导作用几乎与所有已知的信号传导途径相关,蛋白酪氨酸激酶、蛋白激酶C、分裂刺激因子激活的蛋白激酶、转录因子NF-κB、AP-1及Ca2+、环鸟酸苷等信号分子都参与活性氧的信号传导作用.但是,有关活性氧信号传导作用还有许多问题有待阐明. 相似文献
13.
Calcium and signal transduction in plants 总被引:1,自引:0,他引:1
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants. 相似文献
14.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. They can be generated by the mitochondrial electron transport chain in mitochondria and activation of polymorphonuclear leukocytes (PMN) during inflammatory conditions. Excessive generation of ROS may result in attack of and damage to most intracellular and extracellular components in a living organism. Moreover, ROS can directly induce and/or regulate apoptotic and necrotic cell death. Periodontal pathologies are inflammatory and degenerative diseases. Several forms of periodontal diseases are associated with activated PMN. Damage of tissues in inflammatory periodontal pathologies can be mediated by ROS resulting from the physiological activity of PMN during the phagocytosis of periodontopathic bacteria.__________Translated from Biokhimiya, Vol. 70, No. 6, 2005, pp. 751–761.Original Russian Text Copyright © 2005 by Canakci, Cicek, Canakci. 相似文献
15.
Boldyrev A Song R Dyatlov VA Lawrence DA Carpenter DO 《Cellular and molecular neurobiology》2000,20(4):433-450
1. We have investigated the role of reactive oxygen species (ROS) in cell death induced by ischemia or application of the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA) or kainate (KA), in acutely isolated rat cerebellar granule cell neurons, studied by flow cytometry. Various fluorescent dyes were used to monitor intracellular calcium concentration, ROS concentration, membrane potential, and viability in acutely dissociated neurons subjected to ischemia and reoxygenation alone, NMDA or kainate alone, and ischemia and reoxygenation plus NMDA or kainate.2. With ischemia followed by reoxygenation, ROS concentrations rose slightly and there was only a modest increase in cell death after 60 min.3. When NMDA or kainate alone was applied to the cells there was a large increase in ROS and in intracellular calcium concentration but only a small loss of cellular viability. However, when NMDA or kainate was applied during the reoxygenation period there was a large loss of viability, accompanied by membrane depolarization, but the elevations of ROS and intracellular calcium concentration were not greater than seen with the excitatory amino acids alone.4. These observations indicate that other factors beyond ROS and intracellular calcium concentration contribute to cell death in cerebellar granule cell neurons. 相似文献
16.
《Bioscience, biotechnology, and biochemistry》2013,77(12):3100-3106
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited. 相似文献
17.
Amanda Fraga Jorge Moraes José Roberto da Silva Evenilton P. Costa Jackson Menezes Itabajara da Silva Vaz Jr Carlos Logullo Rodrigo Nunes da Fonseca Eldo Campos 《International journal of biological sciences》2013,9(8):842-852
The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. 相似文献
18.
A variety of cellular processes, both physiological and pathophysiological, require or are governed by calcium, including exocytosis, mitochondrial function, cell death, cell metabolism and cell migration to name but a few. Cytosolic calcium is normally maintained at low nanomolar concentrations; rather it is found in high micromolar to millimolar concentrations in the endoplasmic reticulum, mitochondrial matrix and the extracellular compartment. Upon stimulation, a transient increase in cytosolic calcium serves to signal downstream events. Detecting changes in cytosolic calcium is normally performed using a live cell imaging set up with calcium binding dyes that exhibit either an increase in fluorescence intensity or a shift in the emission wavelength upon calcium binding. However, a live cell imaging set up is not freely accessible to all researchers. Alternative detection methods have been optimized for immunological cells with flow cytometry and for non-immunological adherent cells with a fluorescence microplate reader. Here, we describe an optimized, simple method for detecting changes in epithelial cells with flow cytometry using a single wavelength calcium binding dye. Adherent renal proximal tubule epithelial cells, which are normally difficult to load with dyes, were loaded with a fluorescent cell permeable calcium binding dye in the presence of probenecid, brought into suspension and calcium signals were monitored before and after addition of thapsigargin, tunicamycin and ionomycin. 相似文献
19.
Salt stress is one of the most serious abiotic stresses limiting plant growth and development. Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect
of salinity on plants. This study aimed to investigate the impact of exogenous calcium on improving salt tolerance
in Tartary buckwheat cultivars, cv. Xinong9920 (salt-tolerant) and cv. Xinong9909 (salt-sensitive). Four-week-old
Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride (CaCl2), Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and Ca2+-channel blocker lanthanum chloride
(LaCl3) for 10 days. Then, some important physiological and biochemical indexes were determined. The results
showed that salt stress significantly reduced seedling growth, decreased photosynthetic pigments, inhibited antioxidants and antioxidant enzyme activities. However, it increased the reactive oxygen species (ROS) levels in the
two Tartary buckwheat cultivars. Exogenous 10 mM CaCl2 application on salt-stressed Tartary buckwheat seedlings obviously mitigated the negative effects of NaCl stress and partially restored seedlings growth. Ca2+-treated
salt-stressed seedlings diplayed a suppressed accumulation of ROS, increased the contents of total chlorophyll,
soluble protein, proline and antioxidants, and elevated the activities of antioxidant enzymes compared with salt
stress alone. On the contrary, the addition of 0.5 mM LaCl3 and 5 mM EGTA on salt-stressed Tartary buckwheat
seedlings exhibited the opposite effects to those with CaCl2 treatment. These results indicate that exogenous Ca2+
can enhance salt stress tolerance and Ca2+ supplementation may be an effective practice to cultivate Tartary buckwheat in saline soils. 相似文献
20.
活性氧(Reactive Oxygen Species,ROS)是需氧生物有氧代谢和专一酶类产生的含氧的、化学活性极强的一类小分子物质。按照其产生机理可分为两大产生途径,其一是呼吸作用中发生的单电子转移产生的ROS,通常认为此途径产生过量的ROS对生物大分子具有极强的氧化损伤,与多种疾病密切相关;其二是由专一酶类产生的少量ROS,一般认为此途径产生的ROS具有杀灭入侵的外来微生物的作用,但近年来大量研究表明,此途径产生的ROS可行使信号分子和基因开关等多种生理功能。同时,生物体自身的抗氧化系统也可直接调控ROS的水平。本文综合分析近年来对细菌中的ROS的研究成果,并对目前存在的问题和未来的发展进行评述。 相似文献