首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
TRAIL is a member of the tumor necrosis factor family of cytokines, which induces apoptosis of cancer cells, thanks to its binding to its cognate receptors DR5 and DR4. We have recently demonstrated that nanovectorization of TRAIL with single‐walled carbon nanotubes enhanced TRAIL affinity to DR5. In this paper, 1‐pyrenebutyric acid N‐hydroxysuccinimide ester functionalized boron nitride nanotubes (BNNTs) were used to anchor the TRAIL protein. The resulting BNNT/1‐pyrenebutyric acid N‐hydroxysuccinimide ester nanotubes were mixed with methoxy‐poly(ethylene glycol)‐1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐conjugates so as to allow a good dispersion of these nanoparticle TRAIL (NPT) in aqueous solution. The difference of binding between NPT and soluble TRAIL to DR4 and DR5 receptors was then studied by the use of affinity chromatography. DR4 and DR5 receptors were thus immobilized on a chromatographic support, and the binding of the 2 ligands TRAIL and NPT to DR4 and DR5 was studied in the temperature range 30°C to 50°C. Negative enthalpy (ΔH ) values indicated that van der Waals interactions and hydrogen bonding are engaged favorably at the ligand‐receptor interface. It was shown that their rank‐ordered affinities were strongly different in the sequence TRAILDR4 < NPTDR4 < TRAILDR5 < NPTDR5, and the highest affinity for NPT to DR4 and DR5 receptors observed at low pHs was due to the less accessibility of the His molecular switch to be protonated when TRAIL was immobilized on BNNTs. Taken together, our results demonstrated that nanovectorization of TRAIL with BNNTs enhanced its binding to both DR4 and DR5 receptors at 37°C. Our novel nanovector could potentially be used for delivering TRAIL to cells for cancer treatment.  相似文献   

2.
We have investigated the binding properties of [(3)H]quisqualate to rat metabotropic glutamate (mGlu) 1a and 5a receptors and to rat and human brain sections. Saturation isotherms gave K:(D) values of 27 +/- 4 and 81 +/- 22 nM: for mGlu1a and mGlu5a receptors, respectively. Several compounds inhibited the binding to mGlu1a and mGlu5a receptors concentration-dependently. (S:)-4-Carboxyphenylglycine, (S:)-4-carboxy-3-hydroxyphenylglycine, and (R,S)-1-aminoindan-1,5-dicarboxylic acid, which completely inhibited [(3)H]quisqualate binding to the mGlu5a receptor, were inactive in a functional assay using this receptor. The distribution and abundance of binding sites in rat and human brain sections were studied by quantitative receptor radioautography and image analysis. Using 10 nM: [(3)H]quisqualate, a high density of binding was detected in various brain regions with the following rank order of increasing levels: medulla, thalamus, olfactory bulb, cerebral cortex, spinal cord dorsal horn, olfactory tubercle, dentate gyrus molecular layer, CA1-3 oriens layer of hippocampus, striatum, and cerebellar molecular layer. The ionotropic component of this binding could be inhibited by 30 microM: kainate, revealing the distribution of mGlu1+5 receptors. The latter were almost completely inhibited by the group I agonist (S:)-3,5-dihydroxyphenylglycine. The binding profile correlated well with the cellular sites of synthesis and regional expression of the respective group I receptor proteins revealed by in situ hybridization histochemistry and immunohistochemistry, respectively.  相似文献   

3.
Abstract: Cholinesterases form a family of serine esterases that arise in animals from at least two distinct genes. Multiple forms of these enzymes can be precisely localized and regulated by alternative mRNA splicing and by co- or posttranslational modifications. The high catalytic efficiency of the cholinesterases is quelled by certain very selective reversible and irreversible inhibitors. Owing largely to the important role of acetylcholine hydrolysis in neurotransmission, cholinesterase and its inhibitors have been studied extensively in vivo. In parallel, there has emerged an equally impressive enzyme chemistry literature. Cholinesterase inhibitors are used widely as pesticides; in this regard the compounds are beneficial with concomitant health risk. Poisoning by such compounds can result in an acute but usually manageable medical crisis and may damage the CNS and the PNS, as well as cardiac and skeletal muscle tissue. Some inhibitors have been useful for the treatment of glaucoma and myasthenia gravis, and others are in clinical trials as therapy for Alzheimer's dementia. Concurrently, the most potent inhibitors have been developed as highly toxic chemical warfare agents. We review treatments and sequelae of exposure to selected anticholinesterases, especially organophosphorus compounds and carbamates, as they relate to recent progress in enzyme chemistry.  相似文献   

4.
Recent studies from our laboratory resolved two subtypes of the κ2 binding site, termed κ2a and κ2b, using guinea pig, rat, and human brain membranes depleted of μ and δ receptors by pretreatment with the site-directed acylating agents BIT (μ-selective) and FIT (δ-selective). 6β-Iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5α-epoxymorphinan (IOXY), an opioid antagonist that has high affinity for κ2 sites, was radioiodinated to maximum specific activity (2200 Ci/mmol) and purified by high pressure liquid chromotography and used to characterize multiple κ2 binding sites. The results indicated that [125I]IOXY, like [3H]bremazocine, selectively labels κ2 binding sites in rat brain membranes pretreated with BIT and FIT. Using 100 nM [d-Ala2-MePhe4,Gly-ol5]enkephalin to block [125I]IOXY binding to the κ2b site, two subtypes of the κ2a binding site were resolved, both in the absence and presence of 50 μM 5′-guanylyimidodiphosphate. Viewed collectively, these results provide further evidence for heterogeneity of the κ opioid receptor, which may provide new targets for drug design, synthesis, and therapeutics.  相似文献   

5.
Recent studies from our laboratory resolved two subtypes of the κ2 binding site, termed κ2a and κ2b, using guinea pig, rat, and human brain membranes depleted of μ and δ receptors by pretreatment with the site-directed acylating agents BIT (μ-selective) and FIT (δ-selective). 6β-Iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5-epoxymorphinan (IOXY), an opioid antagonist that has high affinity for κ2 sites, was radioiodinated to maximum specific activity (2200 Ci/mmol) and purified by high pressure liquid chromotography and used to characterize multiple κ2 binding sites. The results indicated that [125I]IOXY, like [3H]bremazocine, selectively labels κ2 binding sites in rat brain membranes pretreated with BIT and FIT. Using 100 nM [ -Ala2-MePhe4,Gly-ol5]enkephalin to block [125I]IOXY binding to the κ2b site, two subtypes of the κ2a binding site were resolved, both in the absence and presence of 50 μM 5′-guanylyimidodiphosphate. Viewed collectively, these results provide further evidence for heterogeneity of the κ opioid receptor, which may provide new targets for drug design, synthesis, and therapeutics.  相似文献   

6.
Effects of monensin were examined on the intracellular processing of the GABAA/benzodiazepine receptor (GABAA/BZDR) in neuron cultures derived from embryonic chicken brain, using 3H-flunitrazepam as the probe for the benzodiazepine modulator site on the receptor. Incubation of cultures with 0.1 or 1 microM monensin for 3 h blocked the binding of 3H-flunitrazepam by about 18%. Loss of ligand binding was due to a reduction in the number of binding sites, with no significant changes in receptor affinity. The general cellular protein synthesis and glycosylation in the cells were inhibited by 26% and 56%, respectively, in the presence of 1 microM monensin, as detected by assaying the incorporation of 3H-leucine and 3H-galactose. In contrast, an increase was observed for mannose incorporation by the cultures in the presence of the drug. Moreover, the results from in situ trypsinization of the cultures following monensin treatment showed that monensin did not alter the distribution of intracellular and surface receptors. The data suggest that monensin induces the down-regulation of GABAA/BZDR by generating abnormal glycosylation of the receptor and interrupting its transport within the Golgi apparatus, as well as from the Golgi apparatus to the intracellular pool and cell membrane. The galactosylation of receptor proteins may be important for the maturation of the receptor.  相似文献   

7.
The effect of phospholipases and proteases on the membrane-bound and solubilized A1 adenosine receptor has been studied. Phospholipids modulate the [3H]N6-(R)-phenylisopropyladenosine binding to A1 adenosine receptors in crude membranes and in soluble preparations, because changes in the phospholipid environment decrease both the binding capacity and the affinity for the ligand. It has become clear that 1) there is co-solubilization of receptor and phospholipids; 2) the phospholipid requirements are different for the coupled and the uncoupled receptor; 3) a net charge in the polar head produced by phospholipase D prevents the agonist binding to the receptor-G protein complex; alternatively, when the whole polar head is removed by phospholipase C the uncoupled receptor is altered; and 4) the protease action upon the receptor suggests that receptor coupled to G protein is more protected by the membrane than the uncoupled receptor. In kinetic experiments performed on membranes it was demonstrated that phospholipase C and trypsin increased the Kd value of the high-affinity state by modifying both k1 and k-1. In contrast they only modified the dissociation constant of the low-affinity state. In conclusion it should be noted that phospholipids play a key role for the binding of R-PIA to A1 adenosine receptor. Also, a different disposition within the membrane of the coupled and uncoupled receptor is encountered.  相似文献   

8.
The binding properties of the calcium channel antagonist, [3H]nitrendipine, were investigated in homogenates of the rat cerebral cortex, heart and ileum. The specific component of [3H]nitrendipine binding was consistent with mass-action behavior and was characterized by a high affinity dissociation constant in the range of 0.1 ? 0.3 nM. A variety of other calcium channel antagonists inhibited the binding of [3H]nitrendipine with Ki's that agree generally with the ability of these drugs to block contractions of cardiac and smooth muscle. The inhibition of [3H]nitredipine binding by other dihydropyridines was consistent with competitive antagonism whereas the inhibition caused by verapamil and D600 resembled negative heterotropic cooperativity. Consistent with this latter postulate was the observation that the kinetics of [3H]nitrendipine binding are altered by verapamil, with both the association rate and the dissociation rate being increased. La+3 and several divalent cations caused an inhibition of [3H]nitrendipine with the rank order of potency being Cd+2 > La+3 > Ni+2 > Co+2 ? Mn+2 > Mg+2 ? Ba+2 > Ca+2.  相似文献   

9.
The ability of the cytoplasmic, full-length C-terminus of the β2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS–PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the “activated” conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization.  相似文献   

10.
The effects of the addition of [Cr(phen)3](ClO4)3 and K3[Cr(CN)6] on the 1H nmr spectrum of the copper(I) form of parsley plastocyanin are described. It is concluded that the ions [Cr(phen)3]3+ and [Cr(CN)6]3? bind to different parts of the protein.  相似文献   

11.
12.
The Bacillus sp. SAM1606 α-glucosidase catalyzes the transglucosylation of sucrose to produce theanderose (6-OG-glucosylsucrose) as the major transfer product along with the other di-, tri-, and tetrasaccharides. To obtain an α-glucosidase variant(s) producing theanderose more abundantly, we carried out site-specific mutagenesis studies, in which an amino acid residue (Gly273 or Thr272) near the putative catalytic site (Glu271) of this α-glucosidase was replaced by all other naturally-occurring amino acids. Each mutant, whose concentration was set at 2.6 U/ml (sucrose-hydrolyzing units), was reacted at 60 °C and pH 6.0 with 1.75 M sucrose, and the course of the oligosaccharide production was monitored by HPLC to systematically analyze the effects of amino acid substitutions on the specificity of transglucosylation. The analysis clearly showed site- and residue-dependent differential effects of substitution near the catalytic site on the specificity of oligosaccharide production. For example, mutants with substitution at position 273 by aromatic amino acids or His virtually lost the ability to produce oligosaccharides by transglucosylation. Mutants with substitution at position 272 by amino acids that were bulkier than the wild-type Thr showed enhanced production of tetrasaccharides; whereas, mutants with substitution at position 273 by Lys and Arg exclusively produced disaccharidal transfer products. The highest specificity for theanderose formation (i.e. the highest content of theanderose in the reaction product) was obtained with the T272I mutant, which showed 1.74 times higher productivity (per sucrose-hydrolyzing unit) of theanderose than that of the wild-type enzyme.  相似文献   

13.
The cationic β-sheet cyclic tetradecapeptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) is a diastereomeric lysine ring-size analog of the potent naturally occurring antimicrobial peptide gramicidin S (GS) which exhibits enhanced antimicrobial but markedly reduced hemolytic activity compared to GS itself. We have previously studied the binding of GS14dK4 to various phospholipid bilayer model membranes using isothermal titration calorimetry [Abraham, T. et al. (2005) Biochemistry 44, 2103-2112]. In the present study, we compare the ability of GS14dK4 to bind to and disrupt these same phospholipid model membranes by employing a fluorescent dye leakage assay to determine the ability of this peptide to permeabilize large unilamellar vesicles. We find that in general, the ability of GS14dK4 to bind to and to permeabilize phospholipid bilayers of different compositions are not well correlated. In particular, the binding affinity of GS14dK4 varies markedly with the charge and to some extent with the polar headgroup structure of the phospholipid and with the cholesterol content of the model membrane. Specifically, this peptide binds much more tightly to anionic than to zwitterionic phospholipids and much less tightly to cholesterol-containing than to cholesterol-free model membranes. In addition, the maximum extent of binding of GS14dK4 can also vary considerably with phospholipid composition in a parallel fashion. In contrast, the ability of this peptide to permeabilize phospholipid vesicles is only weakly dependent on phospholipid charge, polar headgroup structure or cholesterol content. We provide tentative explanations for the observed lack of a correlation between the affinity and extent of GS14dK4 binding to, and degree of disruption of the structure and integrity of, phospholipid bilayers membranes. We also present evidence that the lack of correlation between these two parameters may be a general phenomenon among antimicrobial peptides. Finally, we demonstrate that the affinity of binding of GS14dK4 to various phospholipid bilayer membranes is much more strongly correlated with the antimicrobial and hemolytic activities of this peptide than with its effect on the rate and extent of dye leakage in these model membrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号