首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lin ZW  Adams JH 《Radiation research》2007,167(3):330-337
The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.  相似文献   

2.
Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts. Gastrointestinal (GI) tumors are frequent in the United States, and colorectal cancer (CRC) is the third most common cancer accounting for 10% of all cancer deaths. On the basis of the aforementioned epidemiological observations and the frequency of spontaneous precancerous GI lesions in the general population, even a modest increase in incidence by space radiation exposure could have a significant effect on health risk estimates for future manned space flights. Ground-based research is necessary to reduce the uncertainties associated with projected cancer risk estimates and to gain insights into molecular mechanisms involved in space-induced carcinogenesis. We investigated in vivo differential effects of γ-rays and HZE ions on intestinal tumorigenesis using two different murine models, ApcMin/+ and Apc1638N/+. We showed that γ- and/or HZE exposure significantly enhances development and progression of intestinal tumors in a mutant-line-specific manner, and identified suitable models for in vivo studies of space radiation–induced intestinal tumorigenesis.  相似文献   

3.
Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth''s magnetosphere and solid body are lost. NASA''s radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA''s models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.  相似文献   

4.
Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future. NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.Submitted paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

5.
In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to gamma rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASA's space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a +/-10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized.  相似文献   

6.
The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the remaining four genes (XPC, ERCC2, XRCC1, and MLH1) in either the experimental or control animals.  相似文献   

7.
The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds—safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.  相似文献   

8.
A series of Bayesian image processing algorithms which incorporate various classes ofa priori source information in treating data which obeys Poisson and Gaussian statistics is derived using maximum entropy considerations. The standard maximum likelihood equations are shown to be a special case of Bayesian image processing when thea priori information about a source distribution φ j is solely that a non-vanishing probability for each element value φ j exists only in some finite interval,a j ≤φ j φ j . Bayesian image processing equations for thea priori source information that all φ j are finite -∞<φ j <∞ and each φ j distribution has a defined mean φ j and a defined variance σ j are derived. The Bayesian image processing equations are also derived when thea priori source information is that all φ j ≥0 and that each φ j distribution has a defined mean φ j and a defined variance σ j . The a priori source distribution constraint that a correlation exists among nearby elements is also considered. The results indicate improvement over standard methods.  相似文献   

9.
The transmission of direct, diffuse and global solar radiation in and around canopy gaps occurring in an uneven-aged, evergreen Nothofagus betuloides forest during the growing season (October 2006–March 2007) was estimated by means of hemispherical photographs. The transmission of solar radiation into the forest was affected not only by a high level of horizontal and vertical heterogeneity of the forest canopy, but also by low angles of the sun’s path. The below-canopy direct solar radiation appeared to be variable in space and time. On average, the highest amount of transmitted direct solar radiation was estimated below the undisturbed canopy at the southeast of the gap centre. The transmitted diffuse and global solar radiation above the forest floor exhibited lower variability and, on average, both were higher at the centre of the canopy gaps. Canopy structure and stand parameters were also measured to explain the variation in the below-canopy solar radiation in the forest. The model that best fit the transmitted below-canopy direct solar radiation was a growth model, using plant area index with an ellipsoidal angle distribution as the independent variable (R 2 = 0.263). Both diffuse and global solar radiation were very sensitive to canopy openness, and for both cases a quadratic model provided the best fit for these data (R 2 = 0.963 and 0.833, respectively). As much as 75% and 73% of the variation in the diffuse and global solar radiation, respectively, were explained by a combination of stand parameters, namely basal area, crown projection, crown volume, stem volume, and average equivalent crown radius.  相似文献   

10.
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26–29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program’s Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described. Work performed under the auspices of the auspices of the US National Aeronautics and Space Administration and the US Department of Energy.  相似文献   

11.
The conformational space of methyl 6-O-[(R)- and (S)- 1-carboxyethyl]-α-D-galactopyranoside has been investigated. A grid search employing energy minimization at each grid point over the three major degrees of freedom, namely φ, ψ and ω, identified low energy regions. The R-isomer shows five low energy conformers within ca. 1 kcal mol−1 of the global energy minimum. The S-isomer has two conformers within a few tenths of a kcal mol−1 of the global energy minimum. Langevin dynamics simulations have been have been performed at 300 K for 30 ns of each isomer. The φ dihedral angle has as its major conformer (g−1) for the R-isomer whereas it is the (g+) conformer for the S-isomer. For the ψ dihedral angle the (t) conformer has the highest population for both isomers. The dihedral angle ω has the (g+) conformer most highly populated, both for the R- and S-isomer. The above five and two conformational states for the R- and S-isomers, respectively, make up 90% in each case of the populated states during the Langevin dynamics (LD) simulations. Rate constants for the ω dihedral angle have been calculated based on a number correlation function. Three bond homo- and heteronuclear, i.e. proton and carbon-13, coupling constants have been calculated from the dynamics trajectories for comparison to experimental values. The heteronuclear coupling constant H2′,C6 has been measured for the S-isomer and found to be 3.3 Hz. The J value calculated from the LD simulations, namely 2.6 Hz, is in fair agreement with experiment. A comparison to the X-ray structure of the R-isomer shows that the conformation of the crystalline compound occupies the low energy region most highly populated as a single R-conformer (30%) during the LD simulations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Air crew members and airline passengers are continuously exposed to cosmic radiation during their flights. Particles ejected by the sun during so-called solar particle events (SPEs) in periods of high solar activity can contribute to this exposure. In rare cases the dose from a single SPE might even exceed the annual dose limit of 1 mSv above which dose monitoring of air crews is legally required in Germany. Measurements performed by means of neutron monitors have already shown that the relative intensity of secondary neutrons from cosmic radiation is enhanced during an SPE, particularly at regions close to the magnetic poles of the Earth where shielding of the cosmic radiation by the geomagnetic field is low. Here we describe a Bonner sphere spectrometer installed at the Koldewey station at 79°N, i.e. about 1,000 km from the geographic North pole, which is designed to provide first experimental data on the time-dependent energy spectrum of neutrons produced in the atmosphere during an SPE. This will be important to calculate doses from these neutrons to air crew members. The system is described in detail and first results are shown that were obtained during quiet periods of sun activity.  相似文献   

13.
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.  相似文献   

14.
The concept of thermal time is applied to the prediction ofduration from sowing to maturity of calabrese (Brassica oleraceavar italica cv. Corvet), using a multiple linear regressionmodel. Given daily records of maximum and minimum air temperatureand total solar radiation, maturity could be predicted to within±7 d for nine out of ten crops over the four years considered.Within any one year the precision improved to ±5 d. Calabreseappeared to stop developing at a base temperature of 0 °C.Thermal time accounted for 74·3 per cent of the variationin reciprocal total duration and solar radiation a further 17·7per cent. Model, weather, calabrese, broccoli, thermal time, solar radiation  相似文献   

15.
16.
The effects of cosmic radiation in single cells, organic tissues and electronics are a major concern for space exploration and manned missions. Standard heavy ions radiation tests employ ion cocktails with energy of the order of 10 MeV per nucleon and with a linear energy transfer ranging from a few MeV cm(2) mg(-1) to hundreds of MeV cm(2) mg(-1). In space, cosmic rays show significant fluxes at energies up to the order of GeV per nucleon. The present work aims at investigating single event damage due to low-, high- and very-high-energy ions. The European Space Agency reference single event upset monitor data are used to support the discussion. Finally, the effect of ionization induced directly by primary particles and ionization induced by recoils produced in an electronic device is investigated for different types of devices.  相似文献   

17.
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281–293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280–315 nm), UV-A (315–400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.  相似文献   

18.
To establish a relation between biologically effective erythemal radiation (EER) and global solar radiation, the hourly and daily clear-sky broadband (310–2,800 nm) global solar radiation (G) and spectral ultraviolet radiation incident on a horizontal surface at Esfahan, Iran (32°37′N, 51°40′E) were measured during the period 2001–2005. Good correlations at statistically significant levels between the daily values of EER and the daily G were found. The seasonal variability of EER/G is also discussed and the correction factors are determined for inclusion of vertical column ozone and solar zenith angle (SZA) cycles. The comparison of the estimated daily EER against the independent observed EER revealed that under clear sky conditions the estimations are accurate to 10% or better over SZA of 10–60° and column ozone of 250–350 Dobson. The comparison of the results with the similar works that have used shorter period of experimental data showed more accurate estimates. The deduced relations could be used to a rough estimate of the daily EER from G in arid climate regions, where there is no measured UV radiation or there are instrumental and other difficulties encountered in measuring UV radiation.  相似文献   

19.
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher’s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59–66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.  相似文献   

20.
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号