首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.  相似文献   

2.
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.  相似文献   

3.
Neonicotinoid insecticides are potent selective agonists of insect nicotinic acetylcholine receptors (nAChRs). Since their introduction in 1991, resistance to neonicotinoids has been slow to develop, but it is now established in some insect field populations such as the planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. We have reported recently the identification of a target-site mutation (Y151S) within two nAChR subunits (Nlalpha1 and Nlalpha3) from a laboratory-selected field population of N. lugens. In the present study, we have examined the influence of this mutation upon the functional properties of recombinant nAChRs expressed in Xenopus oocytes (as hybrid nAChRs, co-expressed with a rat beta2 subunit). The agonist potency of several nicotinic agonists has been examined, including all of the neonicotinoid insecticides that are currently licensed for either crop protection or animal health applications (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam). The Y151S mutation was found to have no significant effect on the maximal current (I(max)) observed with the endogenous agonist, acetylcholine. In contrast, a significant reduction in I(max) was observed for all neonicotinoids (the I(max) for mutant nAChRs ranged from 13 to 81% of that observed on wild-type receptors). In addition, nAChRs containing the Y151S mutation caused a significant rightward shift in agonist dose-response curves for all neonicotinoids, but of varying magnitude (shifts in EC(50) values ranged from 1.3 to 3.6-fold). The relationship between neonicotinoid structure and their potency on nAChRs containing the Y151S target-site mutation is discussed.  相似文献   

4.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs) are present in high density in insect nervous tissue and are targeted by neonicotinoid insecticides. Improved understanding of the actions of these insecticides will assist in the development of new compounds. Here, we have used whole-cell patch-clamp recording of cholinergic neurons cultured from the central nervous system of 3rd instar Drosophila larvae to examine the actions of acetylcholine (ACh) and nicotine, as well as the neonicotinoids imidacloprid, clothianidin and P-CH-clothianidin on native nAChRs of these neurons. Dose-response data yield an EC(50) value for ACh of 19 microm. Both nicotine and imidacloprid act as low efficacy agonists at native nAChRs, evoking maximal current amplitudes 10-14% of those observed for ACh. Conversely, clothianidin and P-CH-clothianidin evoke maximal current amplitudes up to 56% greater than those evoked by 100 microm ACh in the same neurons. This is the first demonstration of 'super' agonist actions of an insecticide on native insect nAChRs. Cell-attached recordings indicate that super agonism results from more frequent openings at the largest (63.5 pS) conductance state observed.  相似文献   

6.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens . Although this mutation has been identified in two different N. lugens nAChR subunits (Nlα1 and Nlα3) because of difficulties in heterologous expression of Nlα3; its influence on agonist potency has been examined only in Nlα1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlα8), together with evidence for its co-assembly with Nlα3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlα3Y151S mutation to be examined. The Nlα3Y151S mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I max values and increasing EC50 values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlα3-containing, rather than Nlα1-containing nAChR. We conclude that Nlα3- and Nlα1-containing nAChRs may be representative of two distinct insect nAChR populations.  相似文献   

7.
Nicotinic acetylcholine (ACh) receptors (nAChRs) are ligand-gated ion channels which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A-C present in alpha subunits together with loops D-F present in either non-alpha subunits or homomer-forming alpha subunits. To investigate the mechanism of neonicotinoid selectivity, we have examined the effects of altering insect-specific loops D, E and F in hybrid nAChRs containing insect and mammalian subunits (Nlalpha1 from the brown planthopper Nilaparvata lugens and beta2 from rat). Introduction of the insect-specific loops D, E and F, singly or together, into rat beta2 subunit resulted in a leftward shift of the imidacloprid dose-response curves for nAChRs Nlalpha1-beta2 chimeras, reflecting decreases in EC(50), compared to wildtype nAChRs Nlalpha1-beta2. By contrast, the influences on ACh potency were minimal or negligible. The effects of loop D could be interpreted by the earlier findings of Shimomura et al. [2006. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist-binding site. Mol. Pharmacol. 70, 1255-1263.], in which T77R and E79V were shown to be responsible for neonicotinoid selectivity. In the present study, S131Y(R) and D133N in loop E and T191W and P192K in loop F were found to contribute to the neonicotinoid selectivity of insect-specific loops E and F. These results indicated the insect-specific loops D, E and F each play important roles in neonicotinoids selectivity. This study contributes to our understanding of the molecular mechanism underlying selectivity of neonicotinoids against insects over vertebrates.  相似文献   

8.
Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-pi interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.  相似文献   

9.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

10.
Cation-pi interaction, a prominent feature in agonist recognition by neurotransmitter-gated ion channels, does not apply to the anomalous action of neonicotinoids at the insect nicotinic acetylcholine receptor (nAChR). Insect-selective neonicotinoids have an electronegative pharmacophore (tip) in place of the ammonium or iminium cation of the vertebrate-selective nicotinoids, suggesting topological divergence of the agonist-binding sites in insect and vertebrate nAChRs. This study defines the molecular and electronic basis for the potent and selective interaction of the neonicotinoid electronegative pharmacophore with a unique subsite of the Drosophila but not of the vertebrate alpha4beta2 nAChR. Target site potency and selectivity are retained when the usual neonicotinoid N-nitroimine (=NNO(2)) electronegative tip is replaced with N-nitrosoimine (=NNO) or N-(trifluoroacetyl)imine (=NCOCF(3)) in combination with an imidazolidine, imidazoline, thiazolidine, or thiazoline heterocycle. X-ray crystallography establishes coplanarity between the heterocyclic and imine planes, including the electronegative substituent in the trans configuration. The functional tip is the coplanar oxygen atom of the N-nitrosoimine or the equivalent oxygen of the N-nitroimine. Quantum mechanics in the gas and aqueous phases fully support the conserved coplanarity and projection of the strongly electronegative tip. Further, a bicyclic analogue with a nitro tip in the cis configuration but retaining coplanarity has a high potency, whereas the N-trifluoromethanesulfonylimine (=NSO(2)CF(3)) moiety lacking coplanarity confers very low activity. The coplanar system between the electronegative tip and guanidine-amidine moiety extends the conjugation and facilitates negative charge (delta(-)) flow toward the tip, thereby enhancing interaction with the proposed cationic subsite such as lysine or arginine in the Drosophila nAChR.  相似文献   

11.
Liu Z  Han Z  Liu S  Zhang Y  Song F  Yao X  Gu J 《Journal of neurochemistry》2008,106(1):224-230
Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the α subunits and another three loops (D, E, and F) of the non-α subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-α subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens , a target-site mutation (Y151S) was found within two α subunits (Nlα1 and Nlα3). In Drosophila S2 cells and Xenopus oocytes, Nlα1 can form functional receptors with rat β2 subunit. However, the same thing was not observed in Nlα3. In the present paper, by exchanging the corresponding regions between Nlα1 and Nlα3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.  相似文献   

12.
Photoreactive derivatives of imidacloprid and its nitromethylene analogue were synthesized as candidate photoaffinity probes for identifying the amino acid residues of nicotinic acetylcholine receptors (nAChRs) that interact with the neonicotinoid insecticides. When the candidate probes were injected into American cockroaches, the nerve cord neural activity initially increased, then ceased and death of the insect followed. Both the nerve cord and toxicity were enhanced by changing the photoreactive substituent from the para position to the meta position on the spacer benzyl moiety. When tested on a Drosophila SAD/chicken beta2 hybrid, recombinant nAChR expressed in Xenopus oocytes, the nitromethylene candidate probes showed agonist activity similar to that previously observed for imidacloprid.  相似文献   

13.
This structure-activity relationship study for neonicotinoids with an N-haloacetylimino pharmacophore identifies several candidate compounds showing outstanding insecticidal potency and consequently leads to establishing their molecular recognition at an insect nicotinic receptor structural model, wherein the neonicotinoid halogen atoms (fluorine, chlorine, bromine, and iodine) variously interact with the receptor loops C-D interfacial niche via H-bonding and/or hydrophobic interactions.  相似文献   

14.
Neonicotinoid insecticides target the insect nicotinic acetylcholine receptor (nAChR) and are highly effective against the piercing-sucking pests. To explore the molecular interaction mechanism between the neonicotinoids and the insect nAChR, some key neonicotinoid compounds were docked into Aplysia californica acetylcholine binding protein (Ac-AChBP), which serves as a suitable structural surrogate of the insect nAChR. The binding mode study showed that the hydrogen bond force between the electronegative pharmacophore of the neonicotinoids and Cys190NH of the target binding pocket is crucial to the high efficiency of the neonicotinoids. Increasing the coplanarity between the guanidine or amidine and the electronegative pharmacophore of the neonicotinoids could increase the Π-Π stacking effect with Tyr188 of the Ac-AChBP and thus enhance the insecticidal potency. The introduction of an azide group to the chloropyridine ring of the neonicotinoids would reduce its binding ability due to the disappearance of a novel halogen bonding interaction. A series of novel neonicotinoid molecules were designed based on the halogen bonding interaction and two compounds with 6-bromopyridine-3-yl and 6-(trifluoromethyl)-3-pyridinyl were found to be with potential insecticidal activities.  相似文献   

15.
Neonicotinoid insecticides show selective actions on insect nicotinic acetylcholine receptor (nAChR). Two key residues (Trp and Arg/Lys) have been identified as contributing to the neonicotinois binding. To investigate the selective mechanism, a computational model was set up to simulate the interaction between residues (Trp and Arg) of insect nAChR and neonicotinoids by quantum chemistry method. Three analogues of neonicotinoid derivatives without the chloropyridinyl moiety and 3-methyl-indole (3MI), guanidinium (Gua) were used to mimic the neonicotinoids and the side chain of key residues Trp and Arg accordingly. Interaction features of 3MI-analogues, analogues-Gua and 3MI-analogues -Gua complexes were analyzed comparatively. Hydrogen bonding between the nitro group of analogues and Gua was found to be the most important for binding. Moreover, the cooperative pi-pi interaction between analogues and the indole ring, which is strengthened by the existence of Gua, also contributes to the binding. The alternative binding model of neonicotinoids proposed here, although slightly different from others, might be close to the actual.  相似文献   

16.
Structural features and hydrogen-bond interactions of dinotefuran (DIN), imidacoloprid (IMI) and acetamiprid (ACE) have been investigated experimentally through analyses of new crystal structures and observations in structural databases, as well as by Density Functional Theory quantum chemical calculations. Several conformations are observed experimentally in the solid state, highlighting the large flexibility of these compounds. This feature is confirmed by the theoretical calculations in the gas phase, the numerous and different energetic minima of the three neonicotinoids being located within a 10kJ/mol range. Comparisons of the observed and simulated data sheds light on the hydrogen-bond (HB) strength of the functional group at the tip of the electronegative fragment of each pharmacophore (NO(2) for DIN and IMI and CN for ACE). This effect originates in the 'push-pull' nature of these fragments and the related extensive electron delocalization. Molecular electrostatic potential calculations provide a ranking of the two fragments of the three neonicotinoid in terms of HB strength. Thus, the NO(2) group of DIN is the strongest HB acceptor of the electronegative fragment, closely followed by the cyano group of ACE. These two groups are significantly more potent than the NO(2) group of IMI. With respect to the other fragments of the three neonicotinoids, the nitrogen atom of the pyridine of IMI and ACE are stronger HB acceptors than the oxygen atom of the furanyl moiety of DIN. Finally, compared to electrophysiological studies obtained from cockroach synaptic and extrasynaptic receptors, DIN appears more effective than IMI and ACE because it strongly increases dose-dependently the ganglionic depolarisation and the currents amplitudes. These data suggest that DIN, IMI and ACE belong to two subgroups which act differently as agonists of insect nicotinic receptors.  相似文献   

17.
Novel nicotinic action of the sulfoximine insecticide sulfoxaflor   总被引:4,自引:0,他引:4  
The novel sulfoximine insecticide sulfoxaflor is as potent or more effective than the neonicotinoids for toxicity to green peach aphids (GPA, Myzus persicae). The action of sulfoxaflor was characterized at insect nicotinic acetylcholine receptors (nAChRs) using electrophysiological and radioligand binding techniques. When tested for agonist properties on Drosophila melanogaster D??2 nAChR subunit co-expressed in Xenopus laevis oocytes with the chicken ??2 subunit, sulfoxaflor elicited very high amplitude (efficacy) currents. Sulfoximine analogs of sulfoxaflor were also agonists on D??2/??2 nAChRs, but none produced maximal currents equivalent to sulfoxaflor nor were any as toxic to GPAs. Additionally, except for clothianidin, none of the neonicotinoids produced maximal currents as large as those produced by sulfoxaflor. These data suggest that the potent insecticidal activity of sulfoxaflor may be due to its very high efficacy at nAChRs. In contrast, sulfoxaflor displaced [3H]imidacloprid (IMI) from GPA nAChR membrane preparations with weak affinity compared to most of the neonicotinoids examined. The nature of the interaction of sulfoxaflor with nAChRs apparently differs from that of IMI and other neonicotinoids, and when coupled with other known characteristics (novel chemical structure, lack of cross-resistance, and metabolic stability), indicate that sulfoxaflor represents a significant new insecticide option for the control of sap-feeding insects.  相似文献   

18.
Since 1995, neonicotinoid insecticides have been a critical component of arthropod management in potato, Solanum tuberosum L. Recent detections of neonicotinoids in groundwater have generated questions about the sources of these contaminants and the relative contribution from commodities in U.S. agriculture. Delivery of neonicotinoids to crops typically occurs as a seed or in-furrow treatment to manage early season insect herbivores. Applied in this way, these insecticides become systemically mobile in the plant and provide control of key pest species. An outcome of this project links these soil insecticide application strategies in crop plants with neonicotinoid contamination of water leaching from the application zone. In 2011 and 2012, our objectives were to document the temporal patterns of neonicotinoid leachate below the planting furrow following common insecticide delivery methods in potato. Leaching loss of thiamethoxam from potato was measured using pan lysimeters from three at-plant treatments and one foliar application treatment. Insecticide concentration in leachate was assessed for six consecutive months using liquid chromatography-tandem mass spectrometry. Findings from this study suggest leaching of neonicotinoids from potato may be greater following crop harvest in comparison to other times during the growing season. Furthermore, this study documented recycling of neonicotinoid insecticides from contaminated groundwater back onto the crop via high capacity irrigation wells. These results document interactions between cultivated potato, different neonicotinoid delivery methods, and the potential for subsurface water contamination via leaching.  相似文献   

19.
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect brain and are targets for neonicotinoid insecticides. Some proteins, other than nAChRs themselves, might play important roles in insect nAChRs function in vivo and in vitro , such as the chaperone, regulator and modulator. Here we report the identification of two nAChR modulators (Nl-lynx1 and Nl-lynx2) in the brown planthopper, Nilaparvata lugens . Analysis of amino acid sequences of Nl-lynx1 and Nl-lynx2 reveals that they are two members of the Ly-6/neurotoxin superfamily, with a cysteine-rich consensus signature motif. Nl-lynx1 and Nl-lynx2 only increased agonist-evoked macroscopic currents of hybrid receptors Nlα1/β2 expressed in Xenopus oocytes, but not change the agonist sensitivity and desensitization properties. For example, Nl-lynx1 increased I max of acetylcholine and imidacloprid to 3.56-fold and 1.72-fold of that of Nlα1/β2 alone, and these folds for Nl-lynx2 were 3.25 and 1.51. When the previously identified Nlα1Y151S mutation was included (Nlα1Y151S/β2), the effects of Nl-lynx1 and Nl-lynx2 on imidacloprid responses, but not acetylcholine response, were different from that in Nlα1/β2. The increased folds in imidacloprid responses by Nl-lynx1 and Nl-lynx2 were much higher in Nlα1Y151S/β2 (3.25-fold and 2.86-fold) than in Nlα1/β2 (1.72-fold and 1.51-fold), which indicated Nl-lynx1 and Nl-lynx2 might also serve as an influencing factor in target-site insensitivity in N. lugens . These findings indicate that nAChRs chaperone, regulator and modulator may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance.  相似文献   

20.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlα1 and Nlα2 cloned from the brown planthopper Nilaparvata  lugens , a major insect pest of rice crops in many parts of Asia. The influence of Nlα1 and Nlα2 subunits upon the functional properties of recombinant nAChRs has been examined by expression in Xenopus oocytes. In addition, the influence of a Nlα1 mutation (Y151S), which has been linked to neonicotinoid lab generated resistance in N. lugens , has been examined. As in previous studies of insect α subunits, functional expression has been achieved by co-expression with the mammalian β2 subunit. This approach has revealed a significantly higher apparent affinity of imidacloprid for Nlα1/β2 than for Nlα2/β2 nAChRs. In addition, evidence has been obtained for the co-assembly of Nlα1 and Nlα2 subunits into 'triplet' nAChRs of subunit composition Nlα1/Nlα2/β2. Evidence has also been obtained which demonstrates that the resistance-associated Y151S mutation has a significantly reduced effect on neonicotinoid agonist activity when Nlα1 is co-assembled with Nlα2 than when expressed as the sole α subunit in a heteromeric nAChR. These findings may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance in insect field populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号