首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artemis, a member of the SNM1 gene family, is a multifunctional phospho-protein that has been shown to have important roles in V(D)J recombination, DNA double strand break repair, and stress-induced cell-cycle checkpoint regulation. We show here that Artemis interacts with the Cul4A-DDB1 E3 ubiquitin ligase via a direct interaction with the substrate-specificity receptor DDB2. Furthermore, Artemis also interacts with the CDK inhibitor and tumor suppressor p27, a substrate of the Cul4A-DDB1 ligase, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. We also show that the regulation of p27 by Artemis and DDB2 is important for cell cycle progression in normally proliferating cells and in response to serum deprivation. These findings thus define a function for Artemis as an effector of Cullin-based E3 ligase-mediated ubiquitylation, demonstrate a novel pathway for the regulation of p27, and show that Cul4A-DDB1DDB2-Artemis regulates G1 phase cell cycle progression in mammalian cells.  相似文献   

2.
Artemis, a member of the SNM1 gene family, is a multifunctional phospho-protein that has been shown to have important roles in V(D)J recombination, DNA double-strand break repair and stress-induced cell cycle checkpoint regulation. We show here that Artemis interacts with the Cul4A-DDB1 E3 ubiquitin ligase via a direct interaction with the substrate-specificity receptor DDB2. Furthermore, Artemis also interacts with the CDK inhibitor and tumor suppressor p27, a substrate of the Cul4A-DDB1 ligase, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. We also show that the regulation of p27 by Artemis and DDB2 is important for cell cycle progression in normally proliferating cells and in response to serum deprivation. These findings thus define a function for Artemis as an effector of Cullin-based E3 ligase-mediated ubiquitylation, demonstrate a novel pathway for the regulation of p27 and show that Cul4A-DDB1DDB2-Artemis regulates G1-phase cell cycle progression in mammalian cells.Key words: artemis, DDB2, p27, Cul4A-DDB1, ubiquitylation  相似文献   

3.
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2Wt protein, or a mutant form (DDB2Mut) unable to interact with PCNA. We report that overexpression of the DDB2Mut protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21CDKN1A protein level, and a shorter cell cycle length, has been observed in the DDB2Mut cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.  相似文献   

4.
5.
6.
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.  相似文献   

7.
8.
APC/CCdh1 plays a key role in mitotic exit and has essential targets in the G1 phase; however, these mechanisms are poorly understood. In this report, we provide evidence that damaged DNA-binding protein 1 (DDB1) is capable of binding the WD40 domains of Cdh1, but not of Cdc20, through its BPA and BPC domains. Moreover, cells lacking DDB1 exhibit markedly elevated levels of the protein substrates of APC/CCdh1. Depletion of DDB1 in mitotic cells significantly delays mitotic exit, which demonstrates that the interaction between DDB1 and Cdh1 plays a critical role in regulating APC/CCdh1 activity. However, cells depleted of Cdh1 demonstrated no change in the UV-induced degradation of Cdt1, the main function of DDB1 as an E3 ligase. Strikingly, the APC/CCdh1 substrate levels are normal in cell knockdowns of Cul4A and Cul4B, which, along with DDB1, form an E3 ligase complex. This finding indicates that DDB1 modulates the function of APC/CCdh1 in a manner independent on the Cul4-DDB1 complex. Our results suggest that DDB1 may functionally regulate mitotic exit by modulating APC/CCdh1 activity. This study reveals that there may be cross-talk among DDB1, Cdh1, and Skp2 in the control of cell cycle division.  相似文献   

9.
Tumor suppressor RASSF1A (RAS association domain family 1, isoform A) is known to play an important role in regulation of mitosis; however, little is known about how RASSF1A is regulated during the mitotic phase of the cell cycle. In the present study, we have identified Cullin-4A (CUL4A) as a novel E3 ligase for RASSF1A. Our results demonstrate that DNA damage-binding protein 1 (DDB1) functions as a substrate adaptor that directly interacts with RASSF1A and bridges RASSF1A to the CUL4A E3 ligase complex. Depletion of DDB1 also diminishes intracellular interactions between RASSF1A and CUL4A. Our results also show that RASSF1A interacts with DDB1 via a region containing amino acids 165-200, and deletion of this region abolishes RASSF1A and DDB1 interactions. We have found that CUL4A depletion results in increased levels of RASSF1A protein due to increased half-life; whereas overexpression of CUL4A and DDB1 markedly enhances RASSF1A protein ubiquitination resulting in reduced RASSF1A levels. We further show that CUL4A-mediated RASSF1A degradation occurs during mitosis, and depletion of CUL4A markedly reverses mitotic-phase-stimulated RASSF1A degradation. We also note that overexpression of CUL4A antagonizes the ability of RASSF1A to induce M-phase cell cycle arrest. Thus, our present study demonstrates that the CUL4A·DDB1 E3 complex is important for regulation of RASSF1A during mitosis, and it may contribute to inactivation of RASSF1A and promoting cell cycle progression.  相似文献   

10.
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re‐established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage‐binding protein 2 (DDB2) and the ROS1‐mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3′‐phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1‐mediated active DNA demethylation.  相似文献   

11.
Damaged DNA Binding protein 1 (DDB1) is a conserved protein and a component of multiple cellular complexes. Arabidopsis has two homologues of DDB1: DDB1A and DDB1B. In this study we examine the role of DDB1A in Arabidopsis UV tolerance and DNA repair using a DDB1A null mutant (ddb1a) and overexpression lines. DDB1A overexpression lines showed higher levels of UV-resistance than wild-type in a range of assays as well as faster DNA repair. However a significant difference between wild-type plants and ddb1a mutants was only observed immediately following UV treatment in root length and photoproduct repair assays. DDB1A and DDB1B mRNA levels increased 3 h after UV exposure and DDB1A is required for UV regulation of DDB1B and DDB2 mRNA levels. In conclusion, while DDB1A is sufficient to increase Arabidopsis UV tolerance, it is only necessary for immediate response to UV damage.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has been shown to cause G2 cell cycle arrest in human cells by inducing ATR-mediated inactivation of p34cdc2, but factors directly engaged in this process remain unknown. We used tandem affinity purification to isolate native Vpr complexes. We found that damaged DNA binding protein 1 (DDB1), viral protein R binding protein (VPRBP), and cullin 4A (CUL4A)--components of a CUL4A E3 ubiquitin ligase complex, DDB1-CUL4A(VPRBP)--were able to associate with Vpr. Depletion of VPRBP by small interfering RNA impaired Vpr-mediated induction of G2 arrest. Importantly, VPRBP knockdown alone did not affect normal cell cycle progression or activation of ATR checkpoints, suggesting that the involvement of VPRBP in G2 arrest was specific to Vpr. Moreover, leucine/isoleucine-rich domain Vpr mutants impaired in their ability to interact with VPRBP and DDB1 also produced strongly attenuated G2 arrest. In contrast, G2 arrest-defective C-terminal Vpr mutants were found to maintain their ability to associate with these proteins, suggesting that the interaction of Vpr with the DDB1-VPRBP complex is necessary but not sufficient to block cell cycle progression. Overall, these results point toward a model in which Vpr could act as a connector between the DDB1-CUL4A(VPRBP) E3 ubiquitin ligase complex and an unknown cellular factor whose proteolysis or modulation of activity through ubiquitination would activate ATR-mediated checkpoint signaling and induce G2 arrest.  相似文献   

13.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

14.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

15.
16.
17.
18.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   

19.
Damaged DNA binding protein 1, DDB1, bridges an estimated 90 or more WD40 repeats (DDB1-binding WD40, or DWD proteins) to the CUL4-ROC1 catalytic core to constitute a potentially large number of E3 ligase complexes. Among these DWD proteins is the human immunodeficiency virus type 1 (HIV-1) Vpr-binding protein VprBP, whose cellular function has yet to be characterized but has recently been found to mediate Vpr-induced G2 cell cycle arrest. We demonstrate here that VprBP binds stoichiometrically with DDB1 through its WD40 domain and through DDB1 to CUL4A, subunits of the COP9/signalsome, and DDA1. The steady-state level of VprBP remains constant during interphase and decreases during mitosis. VprBP binds to chromatin in a DDB1-independent and cell cycle-dependent manner, increasing from early S through G2 before decreasing to undetectable levels in mitotic and G1 cells. Silencing VprBP reduced the rate of DNA replication, blocked cells from progressing through the S phase, and inhibited proliferation. VprBP ablation in mice results in early embryonic lethality. Conditional deletion of the VprBP gene in mouse embryonic fibroblasts results in severely defective progression through S phase and subsequent apoptosis. Our studies identify a previously unknown function of VprBP in S-phase progression and suggest the possibility that HIV-1 Vpr may divert an ongoing chromosomal replication activity to facilitate viral replication.  相似文献   

20.
In Arabidopsis thaliana, de-etiolated 1 mutants (det1) grown in the dark resemble light-grown wild-type seedlings. Arabidopsis DET1 encodes a 62 kD protein, which is a negative regulator of light signaling. UV-damaged DNA-binding protein 1 (DDB1) was initially identified due to its role in human DNA damage repair. Arabidopsis has two DDB1 homologs: DDB1A and DDB1B. DDB1A mutation enhances det1 mutant phenotypes. In this study, we generated Arabidopsis lines that overexpress DDB1A-3HA in wild-type, det1, as well as Myc-DET1 or GFP-DET1 rescued genetic backgrounds. DDB1A-3HA overexpression resulted in decreased apical hook formation in wild-type dark-grown seedlings, and enhanced det1 small rosette and early flowering time phenotypes. In the Myc-DET1 background, DDB1A-3HA overexpression resulted in decreased rescue of dark- and light-grown hypocotyl length, light-grown anthocyanin and chlorophyll levels, adult height and stem number phenotypes. This result is consistent with the decreased levels of Myc-DET1 protein detected in the DDB1A-3HA overexpression line. The GFP-DET1 DDB1A-3HA double overexpression line exhibited increased rescue of dark and light-grown hypocotyl length and light-grown chlorophyll level phenotypes relative to GFP-DET1 alone, despite the fact that GFP-DET1 protein also decreased in the double overexpression line. In addition, increased DET1 resulted in decreased DDB1A-3HA levels due to proteasomal degradation. Overall, DDB1A-3HA overexpression affected phenotypes in a variety of DET1 backgrounds, reduced epitope-tagged DET1 levels, and, correlatively, in general dampened the rescue of det1 mutants by the DET1–DDB1A complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号