首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
iSPOT (http://cbm.bio.uniroma2.it/ispot) is a web tool developed to infer the recognition specificity of protein module families; it is based on the SPOT procedure that utilizes information from position-specific contacts, derived from the available domain/ligand complexes of known structure, and experimental interaction data to build a database of residue-residue contact frequencies. iSPOT is available to infer the interaction specificity of PDZ, SH3 and WW domains. For each family of protein domains, iSPOT evaluates the probability of interaction between a query domain of the specified families and an input protein/peptide sequence and makes it possible to search for potential binding partners of a given domain within the SWISS-PROT database. The experimentally derived interaction data utilized to build the PDZ, SH3 and WW databases of residue-residue contact frequencies are also accessible. Here we describe the application to the WW family of protein modules.  相似文献   

2.
SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that bind to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain and that ubiquitin binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands.  相似文献   

3.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.  相似文献   

4.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

5.
SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.  相似文献   

6.
Wu C  Ma MH  Brown KR  Geisler M  Li L  Tzeng E  Jia CY  Jurisica I  Li SS 《Proteomics》2007,7(11):1775-1785
Systematic identification of direct protein-protein interactions is often hampered by difficulties in expressing and purifying the corresponding full-length proteins. By taking advantage of the modular nature of many regulatory proteins, we attempted to simplify protein-protein interactions to the corresponding domain-ligand recognition and employed peptide arrays to identify such binding events. A group of 12 Src homology (SH) 3 domains from eight human proteins (Swiss-Prot ID: SRC, PLCG1, P85A, NCK1, GRB2, FYN, CRK) were used to screen a peptide target array composed of 1536 potential ligands, which led to the identification of 921 binary interactions between these proteins and 284 targets. To assess the efficiency of the peptide array target screening (PATS) method in identifying authentic protein-protein interactions, we examined a set of interactions mediated by the PLCgamma1 SH3 domain by coimmunoprecipitation and/or affinity pull-downs using full-length proteins and achieved a 75% success rate. Furthermore, we characterized a novel interaction between PLCgamma1 and hematopoietic progenitor kinase 1 (HPK1) identified by PATS and demonstrated that the PLCgamma1 SH3 domain negatively regulated HPK1 kinase activity. Compared to protein interactions listed in the online predicted human interaction protein database (OPHID), the majority of interactions identified by PATS are novel, suggesting that, when extended to the large number of peptide interaction domains encoded by the human genome, PATS should aid in the mapping of the human interactome.  相似文献   

7.
Many proteins involved in intracellular signal transduction contain a small, 50-60 amino acid domain, termed the Src homology 3 (SH3) domain. This domain appears to mediate critical protein-protein interactions that are involved in responses to extracellular signals. Previous studies have shown that the SH3 domains from several proteins recognize short, contiguous amino acid sequences that are rich in proline residues. While all SH3 recognition sequences identified to date share a conserved P-X-X-P motif, the sequence recognition specificity of individual SH3 domains is poorly understood. We have employed a novel modification of phage display involving biased libraries to identify peptide ligands of the Src, Fyn, Lyn, PI3K and Abl SH3 domains. With biased libraries, we probed SH3 recognition over a 12 amino acid window. The Src SH3 domain prefers the sequence XXXRPLPPLPXP, Fyn prefers XXXRPLPP(I/L)PXX, Lyn prefers RXXRPLPPLPXP, PI3K prefers RXXRPLPPLPP while the Abl SH3 domain selects phage containing the sequence PPPYPPPP(I/V)PXX. We have also analysed the binding properties of Abl and Src SH3 ligands. We find that although the phage-displayed Abl and Src SH3 ligands are proline rich, they are distinct. In surface plasmon resonance binding assays, these SH3 domains displayed highly selective binding to their cognate ligands when the sequences were displayed on the surface of the phage or as synthetic peptides. The selection of these high affinity SH3 peptide ligands provides valuable information on the recognition motifs of SH3 domains, serve as new tools to interfere with the cellular functions of SH3 domain-mediated processes and form the basis for the design of SH3-specific inhibitors of disease pathways.  相似文献   

8.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

9.
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.  相似文献   

10.
The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiologically relevant SH2 and SH3 interaction partners was studied for Lck and its relative Fyn by NMR spectroscopy. In contrast to Fyn, activating ligands do not induce communication between SH2 and SH3 domains in Lck. This can be attributed to the particular properties of the Lck SH3-SH2 linker which is shown to be extremely flexible thus effectively decoupling the behavior of the SH3 and SH2 domains. Measurements on the SH32 tandem from Lck further revealed a relative domain orientation that is distinctly different from that found in the Lck SH32 crystal structure and in other Src kinases. These data suggest that flexibility between SH2 and SH3 domains contributes to the adaptation of Src-family kinases to specific environments and distinct functions.  相似文献   

11.
Nebulin, a giant modular protein from muscle, is thought to act as a molecular ruler in sarcomere assembly. The C terminus of nebulin, located in the sarcomere Z-disk, comprises an SH3 domain, a module well known for its role in protein/protein interactions. SH3 domains are known to recognize proline-rich ligands, which have been classified as type I or type II, depending on their relative orientation with respect to the SH3 domain in the complex formed. Type I ligands are bound with their N terminus at the RT loop of the SH3 domain, while type II ligands are bound with their C terminus at the RT loop. Many SH3 domains can bind peptides of either class. Despite the potential importance of the SH3 domain for the function of nebulin as an integral part of a complex network of interactions, no in vivo partner has been identified so far. We have adopted an integrated approach, which combines bioinformatic tools with experimental validation to identify possible partners of nebulin SH3. Using the program SPOT, we performed an exhaustive screening of the muscle sequence databases. This search identified a number of potential nebulin SH3 partners, which were then tested experimentally for their binding affinity. Synthetic peptides were studied by both fluorescence and NMR spectroscopy. Our results show that nebulin SH3 domain binds selectively to type II peptides. The affinity for a type II peptide, 12 residues long, spanning the sequence of a stretch of titin known to colocalise with nebulin in the Z-disk is in the submicromolar range (0.7 microM). This affinity is among the highest found for SH3/peptide complexes, suggesting that the identified stretch could have significance in vivo. The strategy outlined here is of more general applicability and may provide a valuable tool to identify potential partners of SH3 domains and of other peptide-binding modules.  相似文献   

12.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

13.
CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.  相似文献   

14.
15.
A general, combinatorial library method for the rapid identification of high-affinity peptide ligands of protein modular domains is reported. The validity of this method has been demonstrated by determining the sequence specificity of four Src homology 2 (SH2) domains derived from protein tyrosine phosphatase SHP-1 and SHP-2 and inositol phosphatase SHIP. A phosphotyrosyl (pY) peptide library was screened against the SH2 domains, and the beads that carry high-affinity ligands of the SH2 domains were identified and peptides were sequenced by partial Edman degradation and mass spectrometry. The results reveal that the N-terminal SH2 domain of SHP-2 is capable of recognizing four different classes of pY peptides. Binding competition studies suggest that the four classes of pY peptides all bind to the same site on the SH2 domain surface. The C-terminal SH2 domains of SHP-1 and SHP-2 and the SHIP SH2 domain each bind to pY peptides of a single consensus sequence. Database searches using the consensus sequences identified most of the known as well as many potential interacting proteins of SHP-1 and/or SHP-2. Several proteins are found to bind to the SH2 domains of SHP-1 and SHP-2 through a new, nonclassical ITIM motif, (V/I/L)XpY(M/L/F)XP, which corresponds to the class IV peptides selected from the pY library. The combinatorial library method should be generally applicable to other protein domains.  相似文献   

16.
The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.  相似文献   

17.
It has recently been observed that G protein-coupled receptors (GPCRs) can interact with SH3 domains through polyproline motifs. These interactions appear to be involved in receptor internalization and MAPK signalling. Here we report that the third cytoplasmic loop of the dopamine D3 receptor can interact in vitro with the adaptor protein Grb2. While the amino- and carboxy-terminal SH3 domains of Grb2 separately did not interact with the D3 receptor loop, the interaction is at least partially maintained with a Grb2 mutant for the amino-terminal SH3 domain, but disrupted for a Grb2 mutant with a nonfunctional carboxy-terminal SH3 domain. The data indicate the need of structural integrity of the entire Grb2 protein for the interaction and dominant role of the carboxy-terminal SH3 domain in the interaction. Disruption of the PXXP motifs in the D3 receptor did not affect the interaction with Grb2. These results indicate that GPCRs may contain SH3 ligands that do not contain the postulated minimal consensus sequence PXXP.  相似文献   

18.
Liu BA  Engelmann BW  Nash PD 《FEBS letters》2012,586(17):2597-2605
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.  相似文献   

19.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

20.
SH3 domains are small but important domains in cell-signaling and function through protein-protein interactions. Their promiscuous nature in binding to polyproline peptides makes them much more important because many SH3 domains from different proteins bind to different proteins having polyproline template on their surface. Very subtle changes in the sequence of SH3 domains and the binding peptides determine the specificity of the peptide binding. Recent observation that SH3 domains bind to non- proline peptides makes the scenario of peptide binding involving SH3 domains complicated. If domain swapped dimerization as observed in Eps8-SH3 domain also binds different peptides, it proves the versatility of the SH3 domains in binding to peptides in various ways. An overview of the promiscuity of SH3 domains has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号