首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

2.
We established a method to determine the glycosyl linkage structure by a combination of Smith degradation and liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS) and tandem MS (MS/MS). To assign the sugar linkage of N-glycoprotein, we employed a typical ribonuclease B containing oligosaccharides (Man5-9GlcNAc2). Tryptic digestion of ribonuclease B provided a mixture of high-mannose glycopeptides consisting of the four amino acids, Asn34-Leu-Thr-Lys37 (NLTK, T6). The mixture of glycopeptides was separated by high-performance liquid chromatography (HPLC) in a reversed phase column and was characterized by ESI-Q-TOF-MS and MS/MS. Comparison of the data with and without Smith degradation allowed us to make reasonable assignments to support such linkage patterns as (1-->2), (1-->3), (1-->6) and their multiples. These assignments were limited to six mannoses or lower due to the unstable nature of the higher derivatives. This method should be applicable to determine the linkage pattern of an unknown glycoprotein in about a 6-microgram amount.  相似文献   

3.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

4.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry. The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing beta1-2 xylosyl and/or alpha1-3 fucosyl residue(s) and occurrence of beta1-4GlcNAc residue in the insect glycoproteins. The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man(9 to approximately 4)GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3 GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1 Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3 Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of beta-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a beta1-4 linkage N-acetylglucosaminyl residue.  相似文献   

5.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

6.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

7.
Four novel oligosaccharide units were isolated from the acetolysis products of the acidic polysaccharide chain derived from the glycoproteins of Fusarium sp. M7-1. Their chemical structures were resolved mainly by 1H-NMR spectrometry in combination with methylation analysis and mass spectrometry. The results indicate that these oligosaccharide units originated from the side chains, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNAc alpha 1-->4)GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, ChN<--P--> 6Man beta 1-->4GlcA alpha 1-->2Gal, and Man beta 1-->2(ChN<--P-->6)Man beta 1-->4GlcA alpha 1-->2Gal linked together with the other units reported previously [Jikibara et al. (1992) J. Biochem. 111, 236-243] through beta 1-->6galactofuranoside linkages in the acidic polysaccharide chain.  相似文献   

8.
Golgi alpha-mannosidase II is an enzyme that processes the intermediate oligosaccharide Gn(1)M(5)Gn(2) to Gn(1)M(3)Gn(2) during biosynthesis of N-glycans. Previously, we isolated a cDNA encoding a protein homologous to alpha-mannosidase II and designated it alpha-mannosidase IIx. Here, we show by immunocytochemistry that alpha-mannosidase IIx resides in the Golgi in HeLa cells. When coexpressed with alpha-mannosidase II, alpha-mannosidase IIx colocalizes with alpha-mannosidase II in COS cells. A protein A fusion of the catalytic domain of alpha-mannosidase IIx hydrolyzes a synthetic substrate, 4-umbelliferyl-alpha-D-mannoside, and this activity is inhibited by swainsonine. [(3)H]glucosamine-labeled Chinese hamster ovary cells overexpressing alpha-mannosidase IIx show a reduction of M(6)Gn(2) and an accumulation of M(4)Gn(2). Structural analysis identified M(4)Gn(2) to be Man alpha 1-->6(Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc. The results suggest that alpha-mannosidase IIx hydrolyzes two peripheral Man alpha 1-->6 and Man alpha 1-->3 residues from [(Man alpha 1-->6)(Man alpha 1-->3)Man alpha 1-->6](Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc, during N-glycan processing.  相似文献   

9.
Kim S  Hwang SK  Dwek RA  Rudd PM  Ahn YH  Kim EH  Cheong C  Kim SI  Park NS  Lee SM 《Glycobiology》2003,13(3):147-157
The structures of the oligosaccharides attached to arylphorin from Chinese oak silkworm, Antheraea pernyi, have been determined. Arylphorin, a storage protein present in fifth larval hemolymph, contained 4.8% (w/w) of carbohydrate that was composed of Fuc:GlcNAc:Glc:Man=0.2:4.0:1.4:13.6 moles per mole protein. Four moles of GlcNAc in oligomannose-type oligosaccharides strongly suggest that the protein contains two N-glycosylation sites. Normal-phase HPLC and mass spectrometry oligosaccharide profiles confirmed that arylphorin contained mainly oligomannose-type glycans as well as truncated mannose-type structures with or without fucosylation. Interestingly, the most abundant oligosaccharide was monoglucosylated Man9-GlcNAc2, which was characterized by normal-phase HPLC, mass spectrometry, Aspergillus saitoi alpha-mannosidase digestion, and 1H 600 MHz NMR spectrometry. This glycan structure is not normally present in secreted mammalian glycoproteins; however, it has been identified in avian species. The Glc1Man9GlcNAc2 structure was present only in arylphorin, whereas other hemolymph proteins contained only oligomannose and truncated oligosaccharides. The oligosaccharide was also detected in the arylphorin of another silkworm, Bombyx mori, suggesting a specific function for the Glc1Man9GlcNAc2 glycan. There were no processed glucosylated oligosaccharides such as Glc1Man5-8GlcNAc2. Furthermore, Glc1Man9GlcNAc2 was not released from arylophorin by PNGase F under nondenaturing conditions, suggesting that the N-glycosidic linkage to Asn is protected by the protein. Glc1Man9GlcNAc2 may play a role in the folding of arylphorin or in the assembly of hexamers.  相似文献   

10.
Tertiary structure in N-linked oligosaccharides   总被引:2,自引:0,他引:2  
Distance constraints derived from two-dimensional nuclear Overhauser effect measurements have been used to define the orientation of the Man alpha 1-3Man beta linkage in seven different N-linked oligosaccharides, all containing the common pentasaccharide core Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. Conformational invariance of the Man alpha 1-3Man beta linkage was found for those structures bearing substitutions on the Man alpha 1-3Man beta antenna. However, the presence of either a GlcNAc residue in the beta 1-4 linkage to Man beta ("bisecting GlcNAc") or a xylose residue in the beta 1-2 linkage to Man beta of the trimannosyl core was found to generate conformational transitions that were similar. These transitions were accompanied by characteristic chemical shift perturbations of proton resonances in the vicinity of the Man alpha 1-3Man beta linkage. Molecular orbital energy calculations suggest that the conformational transition between the unsubstituted and substituted cores arises from energetic constraints in the vicinity of the Man alpha 1-3Man beta linkage, rather than specific long-range interactions. These data taken together with our previous results on the Man alpha 1-6Man beta linkage [Homans, S. W., Dwek R. A., Boyd, J., Mahmoudian, M., Richards, W. G., & Rademacher, T. W. (1986) Biochemistry 25, 6342] allow us to discuss the consequences of the modulation of oligosaccharide solution conformations.  相似文献   

11.
The ginger proteases (GP-I and GP-II), isolated from the ginger rhizome Zingiber officinale, have an unusual substrate specificity preference for cleaving peptides with a proline residue at the P2 position. The complete amino-acid sequence of GP-II, a glycoprotein containing 221 amino acids, and about 98% that of GP-I have been determined. Both proteases, which are 82% similar, have cysteine residues at positions 27 and histidines at position 161, corresponding to the essential cysteine-histidine diads found in the papain family of cysteine proteases, and six corresponding cysteine residues that form the three invariant disulfide linkages seen in this family of proteins. The sequence homology with other members (papain, bromelain, actinidin, protease omega, etc.) of this family is approximately 50%. GP-II has two predicted glycosylation sites at Asn99 and Asn156. Analyisis by electrospray and collision-induced dissociation MS showed that both sites were occupied by the glycans (Man)3(Xyl)1(Fuc)1(GlcNAc)2 and (Man)3(Xyl)1(Fuc)1(GlcNAc)3, in a ratio of approximately 7 : 1. Both glycans are xylose containing biantennary complex types that share the common core structural unit, Man1-->6(Man1-->3) (Xyl1-->2)Man1-->4GlcNAc1-->4(Fuc1-->3)GlcNAc for the major form, with an additional N-acetylglucosamine residue being linked, in the minor form, to one of the terminal mannose units of the core structure.  相似文献   

12.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

13.
Asparagine-linked oligosaccharides of stem bromelain glycopeptides were quantitatively released by digestion with the almond glycopeptidase which cleaves beta-aspartylglycosylamine linkage in glycopeptides with oligopeptide moieties. The primary structures of the two oligosaccharide components, (Man)3(Xyl)1(Fuc)1(GlcNAc)2 and (Man)2-(Xyl)1(Fuc)1(GlcNAc)2 were elucidated as Man alpha 1 leads to 6Man alpha 1 leads to 6[Xyl beta 1 leads to 2]Man beta 1 leads to 4GlcNAc beta 1 leads 4[Fuc alpha 1 leads to 3]GlcNAc and Man alpha 1 leads to 6[Xyl beta 1 leads to 2]Man beta 1 leads to 4 GlcNAc beta 1 leads to 4[Fuc alpha 1 leads to 3] GlcNAc, respectively.  相似文献   

14.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

15.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

16.
The sexuality-inducing glycoprotein of Volvox carteri f. nagariensis was purified from supernatants of disintegrated sperm packets of the male strain IPS-22 and separated by reverse-phase HPLC into several isoforms which differ in the degree of O-glycosylation. Total chemical deglycosylation with trifluoromethanesulphonic acid yields the biologically inactive core protein of 22.5 kDa. This core protein possesses three putative binding sites for N-glycans which are clustered in the middle of the polypeptide chain. The N-glycosidically bound oligosaccharides were obtained by glycopeptidase F digestion and were shown by a combination of exoglycosidase digestion, gaschromatographic sugar analysis and two-dimensional HPLC separation to possess the following definite structures: (A) Man beta 1-4GlcNAc beta 1-4GlcNAc; (B) (Man alpha)3 Man beta 1-4GlcNAc beta 1-4GlcNAc Xyl beta; (C) (Man alpha)2 Man beta 1-4GlcNAc beta 1-4GlcNAc; (D) (Man)2Xyl(GlcNAc)2. Xyl beta Two of the three N-glycosidic binding sites carry one B and one D glycan. The A and C glycans are shared by the third N-glycosylation site. The O-glycosidic sugars, which make up 50% of the total carbohydrate, are short (up to three sugar residues) chains composed of Ara, Gal and Xyl and are exclusively bound to Thr residues.  相似文献   

17.
Sasaki A  Ishimizu T  Geyer R  Hase S 《The FEBS journal》2005,272(7):1660-1668
Endo-beta-mannosidase is an endoglycosidase that hydrolyzes only the Man beta 1-4GlcNAc linkage of the core region of N-linked sugar chains. Recently, endo-beta-mannosidase was purified to homogeneity from Lilium longiflorum (Lily) flowers, its corresponding gene was cloned and important catalytic amino acid residues were identified [Ishimizu T., Sasaki A., Okutani S., Maeda M., Yamagishi M. & Hase S. (2004) J. Biol. Chem.279, 38555-38562]. In the presence of Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides as a donor substrate and p-nitrophenyl beta-N-acetylglucosaminide as an acceptor substrate, the enzyme transferred mannose to the acceptor substrate by a beta1-4-linkage regio-specifically and stereo-specifically to give Man beta 1-4GlcNAc beta 1-pNP as a transfer product. Further studies indicated that not only p-nitrophenyl beta-N-acetylglucosaminide but also p-nitrophenyl beta-glucoside and p-nitrophenyl beta-mannoside worked as acceptor substrates, however, p-nitrophenyl beta-N-acetylgalactosaminide did not work, indicating that the configuration of the hydroxyl group at the C4 position of an acceptor is important. Besides mannose, oligomannoses were also transferred. In the presence of (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides (n = 0-2) and pyridylamino GlcNAc beta 1-4GlcNAc, the enzyme transferred (Man)(n)Man alpha 1-6Man en bloc to the acceptor substrate to produce pyridylamino (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc (n =0-2). Thus, the lily endo-beta-mannosidase is useful for the enzymatic preparation of oligosaccharides containing the mannosyl beta 1,4-structure, chemical preparations of which have been frequently reported to be difficult.  相似文献   

18.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

19.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

20.
Bovine prothrombin contains three asparagine-linked sugar chains in 1 molecule. The sugar chains were quantitatively released from the polypeptide backbone by hydrazinolysis. All of the oligosaccharides thus obtained contain N-acetylneuraminic acid. Sialidase treatment of these acidic oligosaccharides released three isomeric oligosaccharides, N-1, N-2 and N-3. N-3 was a typical complex type asparagine-linked sugar chain widely found in other glycoprotein, while N-1 and N-2 were unique, because they contain Gal beta 1 leads to 3GlcNAc grouping in the outer chain moiety. By comparing the data of methylation analysis of the acidic oligosaccharides before and after sialidase treatment, the structures of the sugar chains of bovine prothrombin were confirmed as a mixture of NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn and their partially desialized forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号