首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Booher  D Beach 《The EMBO journal》1987,6(11):3441-3447
A cold-sensitive (cs) allele of cdc2, a gene that acts in both the G1 and G2 phases of the fission yeast cell cycle, has been isolated by classical mutagenesis. Further mutagenesis of a cdc2cs strain yielded an extragenic suppressor that rescued the cs cell cycle defect but simultaneously conferred a temperature-sensitive (ts) cdc phenotype. This suppressor mutation was shown to be an allele of cdc13, a previously identified gene. A variety of allele-specific interactions between cdc2 and cdc13 were discovered. These included suppression of cdc13ts alleles by introduction of the cdc2+ gene on a multi-copy plasmid vector. cdc13+ is required in G2 for mitotic initiation and was shown to play no role in the G1 phase of the cell cycle. cdc2+, however, is essential in G1 for DNA replication and in G2 for mitosis. The newly isolated cs allele of cdc2 that is rescued by a ts allele of cdc13 is defective only in its G2 function. cdc13+ cooperates with cdc2+ in the initiation of mitosis but not in the regulation of DNA replication. We propose that the cdc13+ gene product might be a G2-specific substrate of the cdc2+ protein kinase.  相似文献   

2.
3.
4.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

5.
Ribonucleotide reductase activity is required for generating deoxyribonucleotides for DNA replication. Schizosaccharomyces pombe cells lacking ribonucleotide reductase activity arrest during S phase of the cell cycle. In a screen for hydroxyurea-sensitive mutants in S. pombe, we have identified a gene, liz1+, which when mutated reveals an additional, previously undescribed role for ribonucleotide reductase activity during mitosis. Inactivation of ribonucleotide reductase, by either hydroxyurea or a cdc22-M45 mutation, causes liz1 cells in G2 to undergo an aberrant mitosis, resulting in chromosome missegregation and late mitotic arrest. liz1+ encodes a 514-amino acid protein with strong similarity to a family of transmembrane transporters, and localizes to the plasma membrane of the cell. These results reveal an unexpected G2/M function of ribonucleotide reductase and establish that defects in a transmembrane protein can affect cell cycle progression.  相似文献   

6.
The protein kinase cdc2p is a key regulator of the G1-S and G2-M cell cycle transitions in the yeast Schizosaccharomyces pombe. Activation of cdc2p is regulated by its phosphorylation state and by interaction with other proteins. We have analyzed the consequences for cell cycle progression of altering the conserved threonine phosphorylation site, within the activation loop of cdc2p, to glutamic acid. This mutant, T167 E, promotes entry into mitosis, as judged by the accumulation of mitotic spindles and condensed chromosomes, despite the fact that it lacks demonstrable kinase activity both in vitro and in vivo. However, T167 E cannot promote the metaphase-anaphase transition. Since a component of the anaphase-promoting complex (APC) in S. pombe, cut9p, remains hypophosphorylated at the T167 E arrest point, the cell cycle block might be due to the inability of T167 E to activate the APC. T167 E is lethal when overexpressed, and overproduction also causes a mitotic arrest. Multicopy suppressors of the dominant negative phenotype were isolated, and identified as cdc13 + and suc1 + . Overexpression of suc1 + suppresses the effects of T167 E overproduction by restoring sufficient amounts of suc1p to the cell to allow passage through mitosis.  相似文献   

7.
8.
9.
10.
Cell cycle control in the fission yeastSchizosaccharomyces pombe involves interplay amongst a number of regulatory molecules, including thecdc2, cdc13, cdc25, weel, andmik1 gene products. Cdc2, Cdc13, and Cdc25 act as positive regulators of cell cycle progression at the G2/M boundary, while Wee1 and Mik1 play a negative regulatory role. Here, we have screened for suppressors of the lethal premature entry into mitosis, termed mitotic catastrophe, which results from simultaneous loss of function of both Wee1 and Mik1. Through such a screen, we hoped to identify additional components of the cell cycle regulatory network, and/or G2/M-specific substrates of Cdc2. Although we did not identify such molecules, we isolated a number of alleles of bothcdc2 andcdc13, including a novel wee allele ofcdc2, cdc2-5w. Here, we characterizecdc2-5w and two alleles ofcdc13, which have implications for the understanding of details of the interactions amongst Cdc2, Cdc13, and Wee1.  相似文献   

11.
Although Cks proteins were the first identified binding partners of cyclin-dependent protein kinases (cdks), their cell cycle functions have remained unclear. To help elucidate the function of Cks proteins, we examined whether their binding to p34cdc2 (the mitotic cdk) varies during the cell cycle in Xenopus egg extracts. We observed that binding of human CksHs2 to p34cdc2 was stimulated by cyclin B. This stimulation was dependent on the activating phosphorylation of p34cdc2 on Thr-161, which follows cyclin binding and is mediated by the cdk-activating kinase. Neither the inhibitory phosphorylations of p34cdc2 nor the catalytic activity of p34cdc2 was required for this stimulation. Stimulated binding of CksHs2 to another cdk, p33cdk2, required both cyclin A and activating phosphorylation. Our findings support recent models that suggest that Cks proteins target active forms of p34cdc2 to substrates.  相似文献   

12.
The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins, notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31°?C. Cells are temperature sensitive at 35.5°?C and die as a result of mitotic catastrophe. This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea. Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19°?C to 25°?C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest.  相似文献   

13.
Control over the onset of DNA synthesis in fission yeast   总被引:1,自引:0,他引:1  
The fission yeast Schizosaccharomyces pombe has been used to identify gene functions required for the cell to become committed to the mitotic cell cycle and to initiate the processes leading to chromosome replication in S-phase. Two gene functions cdc2 and cdc10 must be executed for the cell to traverse 'start' and proceed from G1 into S-phase. Before the completion of these two functions the cell is in an uncommitted state and can undergo alternative developmental fates such as conjugation. A third gene, suc1, has also been identified whose product may interact directly with that of cdc2 at 'start'. The molecular functions of the genes involved in the completion of 'start' have been investigated. The cdc2 gene has been shown to be a protein kinase, suggesting that phosphorylation may be involved in the control over the transition from G1 into S-phase. The biochemical functions of the cdc10 and suc1 gene products have not yet been elucidated. A control at 'start' has also been shown to exist in the budding yeast Saccharomyces cerevisiae. Traverse of 'start' requires the execution of the CDC28 gene function. The cdc2 and CDC28 gene products (lower-case letters represent genes of Schizosaccharomyces pombe, and capital letters genes of Saccharomyces cerevisiae) are functionally homologous, suggesting that the processes involved in traverse of 'start' are highly conserved. An analogous control may also exist in the G1 period of mammalian cells, suggesting that the 'start' control step, after which cells become committed to the mitotic cell cycle, may have been conserved through evolution.  相似文献   

14.
15.
16.
Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.  相似文献   

17.
18.
19.
20.
Downregulation of cyclin-dependent kinase (Cdk)-mitotic cyclin complexes is important during cell cycle progression and in G(1) arrested cells undergoing differentiation. srw1p, a member of the Fizzy-related protein family in fission yeast, is required for the degradation of cdc13p mitotic cyclin B during G(1) arrest. Here we show that srw1p is not required for the degradation of cdc13p during mitotic exit demonstrating that there are two systems operative at different stages of the cell cycle for cdc13p degradation, and that srw1p is phosphorylated by Cdk-cdc13p only becoming dephosphorylated during G(1) arrest. We propose that this phosphorylation targets srw1p for proteolysis and inhibits its activity to promote cdc13p turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号