首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axes of soybean seeds are tolerant to dehydration at 6 hours of imbibition, but susceptible to dehydration injury if dried at 36 hours of imbibition. Smooth microsomal membranes were isolated from axes imbibed for 6 hours (dehydration tolerant state) and 36 hours (dehydration susceptible state) before and after dehydration treatment. The phase properties and the lipid composition of the membrane fraction were investigated. Wide angle x-ray diffraction patterns of microsomal membranes from axes imbibed for 6 or 36 hours indicated a liquid-crystalline to gel phase transition at approximately 7°C. Membranes from axes dehydrated at 6 or 36 hours of imbibition and rehydrated for 2 hours exhibited a phase transition at 7°C and 47°C, respectively. Changes in fatty acid saturation did not account for the changes in phase properties. However, the increased phase transition temperature of the membranes from dehydration injured axes was associated with an increase in free fatty acid:phospholipid molar ratio and a decrease in phospholipid:sterol ratio. These results suggests that dehydration prompted a deesterification of the linkage between glycerol and fatty acid side chains of the phospholipid molecules in the membrane. The resultant increase in free fatty acid content in the membrane is thought to alter the fluidity and phase properties of the membrane and contribute to dehydration injury.  相似文献   

2.
Smooth microsomal membranes were isolated from axes of soybean (Glycine max L. Merr.) seeds at the dehydration-tolerant (6 hours of imbibition) and dehydration-susceptible (36 hours of imbibition) stages of development and were exposed to free radicals in vitro using xanthine-xanthine oxidase as a free radical source. Wide angle x-ray diffraction studies indicated that the lipid phase transition temperature of the microsomal membranes from the dehydration-tolerant axes increased from 7 to 14°C after exposure to free radicals, whereas those from the dehydration-susceptible axes increased from 9 to 40°C by the same free radical dose. The increased phase transition temperature was associated with a decrease in the phospholipid:sterol ratio, and an increase in the free fatty acid:phospholipid ratio. There was no significant change in total fatty acid saturation, which indicated that free radical treatment induced deesterification of membrane phospholipid, and not a change in fatty acid saturation. Similar compositional and structural changes have been previously observed in dehydration-injured soybean axes suggesting that dehydration may induce free radical injury to cellular membranes. Further, these membranes differ in their susceptibility to free radical injury, presumably reflecting compositional differences in the membrane since these membranes were exposed to free radicals in the absence of cytosol.  相似文献   

3.
Dehydration Injury in Germinating Soybean (Glycine max L. Merr.) Seeds   总被引:5,自引:3,他引:2  
The sensitivity of soybean (Glycine max L. Merr. cv Maple Arrow) seeds to dehydration changed during germination. Seeds were tolerant of dehydration to 10% moisture if dried at 6 hours of imbibition, but were susceptible to dehydration injury if dried at 36 hours of imbibition. Dehydration injury appeared as loss of germination, slower growth rates of isolated axes, hypocotyl and root curling, and altered membrane permeability. Increased electrolyte leakage due to dehydration treatment was observed only from isolated axes but not from cotyledons, suggesting that cotyledons are more tolerant of dehydration. The transition from a dehydration-tolerant to a dehydration-susceptible state coincided with radicle elongation. However, the prevention of cell elongation by osmotic treatment in polyethylene glycol (−6 bars) or imbibition in 20 micrograms per milliliter cycloheximide did not prevent the loss of dehydration tolerance suggesting that neither cell elongation nor cytoplasmic protein synthesis was responsible for the change in sensitivity of soybean seeds to dehydration. Furthermore, the rate of dehydration or rate of rehydration did not alter the response to the dehydration stress.  相似文献   

4.
Soybean (Glycine max L. Merr) seeds lose their tolerance of dehydration between 6 and 36 hours of imbibition. Soybean axes and cotyledons were excised 6 hours (tolerant of dehydration) and 36 hours (susceptible) after commencing imbibition and subsequently dehydrated to 10% moisture. Kinetics of the efflux of potassium, phosphate, amino acid, sugar, protein, and total electrolytes were compared in the four treatments during rehydration. Only slight differences were observed in the kinetics of solute efflux between the two cotyledon treatments dehydrated at 6 and 36 hours suggesting that the cotyledons may retain their tolerance of dehydration at this stage of germination. Several symptoms of injury were observed in the axes dehydrated at 36 hours. An increase in the initial leakage of solutes during rehydration, as quantified by the y-intercept of the linear regression line for solute efflux between 2 and 8 hours suggests an increased incidence of cell rupture. An increase in the rate of solute efflux (slope of regression line between 2 and 8 hours) from fully rehydrated axes was observed in comparison to axes dehydrated at 6 hours. The Arrhenius activation energy for potassium, phosphate, and amino acid efflux decreased and for protein remained unchanged. Both observations indicate an increase in membrane permeability in dehydration-injured tissue. Increasing the H+ concentration of the external solution increased K+ efflux from both control and dehydrated/rehydrated samples, increased sugar efflux from axes at 6 hours imbibition but decreased sugar efflux from axes at 36 hours imbibition, indicating changes in membrane properties during germination. The dehydration treatment did not alter the pattern of the pH response of axes dehydrated at 6 or 36 hours but did increase the quantity of potassium and sugar efflux from dehydration injured axes. These results are interpreted as indicating that dehydration of soybean axes at 36 hours of imbibition increased both the incidence of cell rupture during rehydration and altered membrane permeability of the rehydrated tissue.  相似文献   

5.
The oxidative hemolysis of rabbit erythrocytes induced by free radicals and its inhibition by chain-breaking antioxidants have been studied. The free radicals were generated from either a water-soluble or a lipid-soluble azo compound which, upon its thermal decomposition, gave carbon radicals that reacted with oxygen immediately to give peroxyl radicals. The radicals generated in the aqueous phase from a water-soluble azo compound induced hemolysis in air, but little hemolysis was observed in the absence of oxygen. Water-soluble chain-breaking antioxidants, such as ascorbic acid, uric acid, and water-soluble chromanol, suppressed the hemolysis dose dependently. Vitamin E in the erythrocyte membranes was also effective in suppressing the hemolysis. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without phytyl side chain, incorporated into dimyristoylphosphatidylcholine liposomes, suppressed the above hemolysis, but alpha-tocopherol did not suppress the hemolysis. Soybean phosphatidylcholine liposomes also induced hemolysis, and a lipid-soluble azo initiator incorporated into the soybean phosphatidylcholine liposomes accelerated the hemolysis. The chain-breaking antioxidants incorporated into the liposomes were also effective in suppressing this hemolysis.  相似文献   

6.
Plasma membranes were isolated from oat (Avena sativa) roots by the phase-partitioning method. The membranes were exposed to repeated periods of moderate water-deficit stress, and a water-deficit tolerance was induced (acclimated plants). The plasma membranes of the controls (nonacclimated plants) were characterized by a high phospholipid content, 79% of total lipids, cerebrosides (9%) containing hydroxy fatty acids (>90% 24:1-OH) and free sterols, acylated sterylglucosides, sterylglucosides, and steryl esters, together amounting to 12%. Major phospholipids were phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. After the membranes were acclimated to dehydration, the lipid to protein ratio decreased from 1.3 to 0.7 micromoles per milligram. Furthermore, the cerebrosides decreased to 5% and free sterols increased from 9% (nonacclimated plants) to 14%. Because the total phospholipids did not change significantly, the free sterol to phospholipid ratio increased from 0.12 to 0.19. There was no change in the relative distribution of sterols after acclimation. The ratio of phosphatidylcholine to phosphatidylethanolamine changed from 1.1 in the nonacclimated plants to 0.69 in the acclimated plants. The results show that acclimation to dehydration implies substantial alterations in the lipid composition of the plasma membrane.  相似文献   

7.
A mixture of liquid-crystalline and gel-phase lipid domains is detectable by wide angle x-ray diffraction in smooth microsomal membranes isolated from senescent 7-day-old cotyledons, whereas corresponding membranes from young 2-day-old cotyledons are exclusively liquid-crystalline. The gel-phase domains in the senescent membranes comprise phospholipid degradation products including diacylglycerols, free fatty acids, long-chain aldehydes, and long-chain hydrocarbons. The same complement of phospholipid degradation products is also present in nonsedimentable microvesicles isolated from senescent 7-day-old cotyledons by filtration of a 250,000g, 12-hour supernatant through a 300,000 dalton cut-off filter. The phospholipid degradation products in the microvesicles form gel-phase lipid domains when reconstituted into phospholipid liposomes. Nonsedimentable microvesicles of a similar size, which are again enriched in the same gel-phase-forming phospholipid degradation products, are also generated in vitro from smooth microsomal membranes isolated from 2-day-old cotyledons when Ca2+ is added to activate membrane-associated lipolytic enzymes. The Ca2+-treated membranes do not contain detectable gel-phase domains, suggesting that the phospholipid degradation products are completely removed by microvesiculation. The observations collectively indicate that these nonsedimentable microvesicles serve as a vehicle for moving phospholipid degradation products out of membrane bilayers into the cytosol. As noted previously (Yao K, Paliyath G, Humphrey RW, Hallett FR, Thompson JE [1991] Proc Natl Acad Sci USA 88: 2269-2273), the term “deteriosome” connotes this putative function and would serve to distinguish these microvesicles from other cytoplasmic microvesicles unrelated to deterioration.  相似文献   

8.
脱水速率对黄皮胚轴脱水敏感性及膜脂过氧化的影响   总被引:2,自引:0,他引:2  
以黄皮种子离体胚轴为材料,研究了不同干燥速率对胚轴脱水反应和膜脂过氧化的影响.在脱水过程中,胚轴的萌发率、活力指数、电解质渗漏速率,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性逐渐降低,膜脂过氧化产物MDA的含量不断增加.脱水速率愈快,胚轴的半致死含水量就愈低.快速干燥的胚轴能在较低的含水量下存活是因为缩短了在中间含水量下发生的膜脂过氧化作用的时间,以及保持较高的SOD、POD和CAT活性;缓慢干燥的胚轴当与周围环境达到水分平衡后,生活力的丧失将与保持在水分平衡后的时间有关.因此,脱水速率是一种影响顽拗性种子或者胚轴脱水敏感性的重要因子.  相似文献   

9.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2′-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

10.
A freeze-thaw cycle to −12°C induced several physical and compositional changes in the microsomal membranes isolated from crown tissue of winter wheat (Triticum aestivum L. cv Frederick). Exposing 7-day-old, nonacclimated seedlings to a single freeze-thaw cycle prevented regrowth of the crown and resulted in increased membrane semipermeability. The phospholipid and protein content of microsomal membranes isolated from the crowns decreased by 70 and 50%, respectively. Microsomal membranes isolated after the lethal freeze-thaw stress, and liposomes prepared from total membrane lipids, exhibited greater microviscosity, measured by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The number of free thiol groups per milligram membrane protein, measured using the specific fluorescent probe, N-dansylaziridine, decreased after freezing. In contrast, acclimated wheat seedlings which showed increased freezing tolerance, as indicated by survival and ion leakage, suffered almost no effects from the freeze thaw treatment as determined by measurements of membrane microviscosity, phospholipid content, protein content, or danzylaziridine fluorescence. An examination of membranes isolated from frozen tissue showed that most of the changes occurred during the freezing and not during the thawing phase.  相似文献   

11.
Declining viability and lipid degradation during pollen storage   总被引:1,自引:0,他引:1  
Declining viability of pollen during storage at 24° C in atmospheres of 40% relative humidity (RH) and 75% RH was studied, with special emphasis on lipid changes. Pollens of Papaver rhoeas and Narcissus poeticus, characterized by a high linolenic acid content, were compared with Typha latifolia pollen which has a low linolenic acid content. The rationale behind this was to answer the question of whether lipid peroxidation is involved in the rapid viability loss and reduced membrane integrity of, in particular, the unsaturated-lipid pollen types. Viability and membrane integrity degraded more rapidly at 75% RH than at 40% RH. All pollen species showed deesterification of acyl chains of lipids but no detectable peroxidation at both RH levels. Considerable amounts of lipid-soluble antioxidants were detected that did not degrade during storage. Free fatty acids and lysophospholipids were formed during storage, the effects of which on membranes are discussed. These degradation products were very prominent in the short-lived Papaver pollen. The loss of viability does coincide with phospholipid deesterification. A significant decrease of the phospholipid content occurred at 75% RH, but not at 40% RH. Based on compositional analyses of phospholipids and newly formed free fatty acids, it was concluded that the deesterification of acyl chains from the lipids occurred at random. We suggest that, due to the low water content of the pollen, free radicals rather than unspecific acyl hydrolases are involved in the deesterification process.  相似文献   

12.
In previous studies, we have shown that carrot (Daucus carota L.) somatic embryos acquire complete desiccation tolerance when they are treated with abscisic acid during culture and subsequently dried slowly. With this manipulable system at hand, we have assessed damage associated with desiccation intolerance. Fast drying caused loss of viability, and all K+ and carbohydrates leached from the somatic embryos within 5 min of imbibition. The phospholipid content decreased by about 20%, and the free fatty acid content increased, which was not observed after slow drying. However, the extent of acyl chain unsaturation was unaltered, irrespective of the drying rate. These results indicate that, during rapid drying, irreversible changes occur in the membranes that are associated with extensive leakage and loss of germinability. The status of membranes after 2 h of imbibition was analyzed in a freeze-fracture study and by Fourier transform infrared spectroscopy. Rapidly dried somatic embryos had clusters of intramembraneous particles in their plasma membranes, and the transition temperature of isolated membranes was above room temperature. Membrane proteins were irreversibly aggregated in an extended [beta]-sheet conformation and had a reduced proportion of [alpha]-helical structures. In contrast, the slowly dried somatic embryos had irregularly distributed, but non-clustered, intramembraneous particles, the transition temperature was below room temperature, and the membrane proteins were not aggregated in a [beta]-sheet conformation. We suggest that desiccation sensitivity of rapidly dried carrot somatic embryos is indirectly caused by an irreversible phase separation in the membranes due to de-esterification of phospholipids and accumulation of free fatty acids.  相似文献   

13.
Desiccation and Free Radical Mediated Changes in Plant Membranes   总被引:4,自引:0,他引:4  
Senaratna, T., McKersie, B. D. and Borochov, A. 1987. Desiccationand free radical mediated changes in plant membranes.—J.exp. Bot. 38: 2005-2014. In vitro treatment of microsomal membranes from the axes ofsoybean (Glycine max (L.) Merr.) seeds with free radicals simulatesthe type of membrane injury observed following a lethal desiccationstress—the accumulation of free fatty acids in the membranebilayer, the loss of lipid-P, and the formation of gel phasedomains. The major phospholipids in the microsomal fractionwere phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol.Although these treatments induced an extensive loss of totalphospholipid from the microsomal fraction following desiccation,the ratio of the major phospholipids remained unchanged. Neitherlysophosphatides nor phosphatidic acid accumulated in the fraction,but free fatty acid levels increased. Therefore, cleavage ofboth acyl chains from the phospholipid molecule occurred followingdesiccation of the axes and in vitro free radical treatmentof the membrane. Both treatments also promoted formation of gel phase domainsas shown by wide angle x-ray diffraction and increased microviscosityas determined by the fluorescent probe, DPH (1,6-diphenyl-1,3,5-hexatriene).This could be simulated in liposomes prepared from the totalmicrosomal lipid fraction by the addition of saturated freefatty acids (16:0 and 18:0) at the levels observed followingstress. In contrast, the addition of unsaturated fatty acidsperturbed the bilayer and reduced microviscosity. The inclusionof both saturated and unsaturated free fatty acids as observedin vivo promoted a response similar to that observed with onlythe addition of the saturated free fatty acids. Desiccation of the axes also promoted a loss of microsomal protein,which was recovered in the 165 000 x g supernatant, and an apparentloss of thiol groups from the membrane as determined by a thiolspecific fluorescence probe, dansylaziridine. This loss of thiolgroups could also be simulated by exposure of the membranesto gamma irradiation, which was used as a non-enzymatic sourceof free radicals. Collectively, these data support the hypothesisthat membrane disassembly following desiccation stress is mediatedby a free radical mechanism, and that the consequent de-esterificationof membrane phospholipid and accumulation of saturated freefatty acids alter the physical properties of the membrane. Key words: Membrane microviscosity, membrane fluidity, free fatty acids  相似文献   

14.
Context: Nanocarrier-based strategies to achieve delivery of bioactives specifically to the mitochondria are being increasingly explored due to the importance of mitochondria in critical cellular processes.

Objective: To test the ability of liposomes modified with newly synthesized triphenylphosphonium (TPP)–phospholipid conjugates and to test their use in overcoming the cytotoxicity of stearyl triphenylphosphonium (STPP)-modified liposomes when used for delivery of therapeutic molecules to the mitochondria.

Methods: TPP–phospholipid conjugates with the dioleoyl, dimyristoyl or dipalmitoyl lipid moieties were synthesized and liposomes were prepared with these conjugates in a 1?mol% ratio. The subcellular distribution of the liposomes was tested by confocal microscopy. Furthermore, the liposomes were tested for their effect on cell viability using a MTS assay, on cell membrane integrity using a lactate dehydrogenase assay and on mitochondrial membrane integrity using a modified JC-1 assay.

Results: The liposomes modified with the new TPP–phospholipid conjugates exhibited similar mitochondriotropism as STPP-liposomes but they were more biocompatible as compared to the STPP liposomes. While the STPP-liposomes had a destabilizing effect on cell and mitochondrial membranes, the liposomes modified with the TPP–phospholipid conjugates did not demonstrate any such effect on biomembranes.

Conclusions: Using phospholipid anchors in the synthesis of TPP–lipid conjugates can provide liposomes that exhibit the same mitochondrial targeting ability as STPP but with much higher biocompatibility.  相似文献   

15.
Protoplasts were isolated from pea (Pisum sativum L. cv. Alaska) embryonic axes during and after germination to determine whether the loss of desiccation tolerance in the embryos also occurs in the protoplasts. At all times studied, protoplast survival decreased as water content decreased; however, the sensitivity to dehydration was less when the protoplasts were isolated from embryos that were still desiccation-tolerant (12 h and 18 h of imbibition) than when protoplasts were derived from axes that were sensitive (24 h and 36 h of imbibition). The water content at which 50% of the population was killed (WC50) increased throughout germination and early seedling growth for both the intact tissue and the protoplasts derived from them. Prior to radicle emergence, protoplasts were less desiccation-tolerant than the intact axes; however, protoplasts isolated from radicles shortly after emergence had lower WC50s than the intact radicles. A comparison of protoplast survival after isolation and dehydration in either 500 mM sucrose/raffinose or 700 mM sucrose revealed no difference in tolerance except at 24 h of imbibition, when protoplasts treated in the more concentrated solution had improved tolerance of dehydration. Although intact epicotyls are generally more desiccation-tolerant than radicles, protoplasts isolated separately from epicotyls and radicles did not differ in tolerance. Collectively, these data suggest that protoplasts gradually lose desiccation tolerance during germination, as do the orthodox embryos from which they were derived. However, even prior to radicle emergence, protoplasts display a sensitivity to progressive dehydration that is similar to that shown by recalcitrant and ageing embryos.  相似文献   

16.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

17.
Free radical and freezing injury to cell membranes of winter wheat   总被引:10,自引:0,他引:10  
The symptoms of injury in microsomal membranes isolated from crowns of seedlings of Triticum aestivum , L. cultivar Fredrick after a lethal freeze-thaw stress included an increased lipid phase transition temperature, loss of lipid phosphate (lipid-P), and increased free fatty acid levels. However, minimal changes in fatty acid saturation were observed, suggesting minimal amounts of lipid peroxidation. All of these injury symptoms, including the lack of lipid peroxidation, were simulated in vitro by treatment of isolated membranes with oxygen free radicals, generated from either xanthine oxidase (EC 1.1.3.22) or paraquat (l,r-dimethyl-4,4'-bipyridinium dichloride). Further evidence indicating a relationship between free radicals and freezing injury comes from the observation that both protoplasts and microsomal membranes isolated from wheat seedlings, that had been acclimated to induce freezing tolerance, also had increased tolerance of oxygen free radicals, and contained higher lipid-soluble antioxidant levels, than those from non-acclimated seedlings. Lipid-soluble antioxidants accumulated in the crown tissue of the wheat seedling during the acclimation period. Freezing stress accelerated the formation of oxygen free radicals. Membranes isolated from crowns after a freeze–thaw stress tended to produce higher levels of superoxide as shown by the reduction of Tiron (1,2-dihydroxy-l,3-benzenedisulfonic acid). In protoplasts, increased superoxide production coincided with lethal freezing injury. These results are discussed in terms of the possible involvement of oxygen free radicals in mediating aspects of freezing injury to cell membranes.  相似文献   

18.
Sugars and desiccation tolerance in seeds   总被引:37,自引:9,他引:28       下载免费PDF全文
Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing.  相似文献   

19.
Tocopherols (vitamin E) located in the hydrophobic domains of biological membranes act as chain breaking antioxidants preventing the propagation of free radical reactions of lipid peroxidation. The naturally occurring form, d-alpha tocopherol is an exquisite molecule in that it is intercalated in the membrane in such a way that the hydrophobic tail anchors the molecule positioning the chromanol ring containing the hydroxyl group, which is the essence of its antioxidant function, at the polar hydrocarbon interface of phospholipid membranes. The interaction of this group with water soluble substances is not very well understood. In the present study, an investigation was made of the interaction of ascorbate and ferrous ions (Fe+2) initiators of lipid peroxidation with alpha tocopherol. The results show that tocopherol increases membrane associated iron. The formation of a tocopherol iron complex in the presence of phospholipid liposomes and ascorbate in its reduced form is indicated. These results suggest a new way in which tocopherols act to inhibit lipid peroxidation.  相似文献   

20.
Chen G  Djuric Z 《FEBS letters》2001,505(1):151-154
It has been questioned whether carotenoids can act as antioxidants in biological membranes. Biological membranes can be modeled for studies of lipid peroxidation using unilamellar liposomes. Both carotenoid depletion and lipid peroxidation were increased with increasing oxygen tension in unilamellar liposomes. Carotenoids in such liposomes were found to be very sensitive to degradation by free radicals generated from iron and 2,2'-azobis(2-amidinopropane) dihydrochloride, but they were not protective against lipid peroxidation. Lycopene and beta-carotene were more sensitive to free radical attack than lutein, zeaxanthin, and beta-cryptoxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号