首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gourbière S  Dorn P  Tripet F  Dumonteil E 《Heredity》2012,108(3):190-202
Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies.  相似文献   

2.
The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.  相似文献   

3.
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases.  相似文献   

4.
植物病毒病是危害我国蔬菜生产的第一大病害,而烟粉虱Bemisia tabaci Gennadius、蓟马和蚜虫等小型昆虫是蔬菜病毒病的主要传播媒介.虫传病毒病害的防控策略复杂且难度大,目前生产上主要依赖化学农药防治介体昆虫,预防与控制蔬菜病毒病.种植户化学杀虫药剂的不合理使用、甚至滥用,导致媒介昆虫抗药性、杀虫剂污染与...  相似文献   

5.
Tsetse--A haven for microorganisms   总被引:6,自引:0,他引:6  
Arthropods are involved in the transmission of parasitic and viral agents that cause devastating diseases in animals and plants. Effective control strategies for many of these diseases still rely on the elimination or reduction of vector insect populations. In addition to these pathogenic organisms, arthropods are rich in microbes that are symbiotic in their associations and are often necessary for the fecundity and viability of their hosts. Because the viability of the host often depends on these obligate symbionts, and because these organisms often live in close proximity to disease-causing pathogens, they have been of interest to applied biologists as a potential means to genetically manipulate populations of pest species. As knowledge on these symbiotic associations accumulates from distantly related insect taxa, conserved mechanisms for their transmission and evolutionary histories are beginning to emerge. Here, Serap Aksoy summarizes current knowledge on the functional and evolutionary biology of the multiple symbionts harbored in the medically and agriculturally important insect group, tsetse, and their potential role in the control of trypanosomiasis.  相似文献   

6.
闫凤鸣 《昆虫学报》2020,(2):123-130
大多数植物病毒及一些植物病原细菌由介体昆虫传播。植物病原与介体昆虫关系的研究有助于找到防控介体传播病原的关键环节,因此植物病原与介体昆虫的互作关系是植物病原传播机理研究中的核心问题。本文概述了国内外在植物病原与介体昆虫互作研究的最新进展,推介了本专辑论文的主要内容,并在此基础上,从生态和进化的角度提出了在植物病原-媒介昆虫互作研究中以下3个值得关注的研究方向:(1)植物病原与介体昆虫互作对生态系统的影响;(2)昆虫介体传播植物病毒的不同方式之间的关联性以及病毒、介体和植物之间的协同进化关系;(3)自然条件下植物病原-媒介昆虫互作的机理。植物病原与媒介昆虫互作的研究,既是生态和进化的理论问题,也和植物病原及其介体昆虫的绿色防控密切相关。  相似文献   

7.
Some pathogenic phloem‐limited bacteria are a major threat for worldwide agriculture due to the heavy economic losses caused to many high‐value crops. These disease agents – phytoplasmas, spiroplasmas, liberibacters, and Arsenophonus‐like bacteria – are transmitted from plant to plant by phloem‐feeding Hemiptera vectors. The associations established among pathogens and vectors result in a complex network of interactions involving also the whole microbial community harboured by the insect host. Interactions among bacteria may be beneficial, competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect vector competence and consequently the spread of diseases. Interference is observed among pathogen strains competing to invade the same vector specimen, causing selective acquisition or transmission. Insect bacterial endosymbionts are another pivotal element of interactions between vectors and phytopathogens, because of their central role in insect life cycles. Some symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization by plant pathogens, by producing antimicrobial substances, by stimulating the production of antimicrobial substances by insects, or by competing for host infection. In other cases, the mutual exclusion between symbiont and pathogen suggests a possible detrimental influence on phytopathogens displayed by symbiotic bacteria; conversely, examples of microbes enhancing pathogen load are available as well. Whether and how bacterial exchanges occurring in vectors affect the relationship between insects, plants, and phytopathogens is still unresolved, leaving room for many open questions concerning the significance of particular traits of these multitrophic interactions. Such complex interplays may have a serious impact on pathogen spread and control, potentially driving new strategies for the containment of important diseases.  相似文献   

8.
Some diseases manifest as one characteristic set of symptoms to the host, but can be caused by multiple pathogens. Control treatments based on plant symptoms can make it difficult to effectively manage such diseases, as the biology of the underlying pathogens can vary. Grapevine leafroll disease affects grapes worldwide, and is associated with several viral species in the family Closteroviridae. Whereas some of the viruses associated with this disease are transmitted by insect vectors, others are only graft-transmissible. In three regions of California, we surveyed vineyards containing diseased vines and screened symptomatic plants for all known viral species associated with grapevine leafroll disease. Relative incidence of each virus species differed among the three regions regions, particularly in relation to species with known vectors compared with those only known to be graft-transmitted. In one region, the pathogen population was dominated by species not known to have an insect vector. In contrast, populations in the other surveyed regions were dominated by virus species that are vector-transmissible. Our survey did not detect viruses associated with grapevine leafroll disease at some sites with characteristic disease symptoms. This could be explained either by undescribed genetic diversity among these viruses that prevented detection with available molecular tools at the time the survey was performed, or a misidentification of visual symptoms that may have had other underlying causes. Based on the differences in relative prevalence of each virus species among regions and among vineyards within regions, we expect that region and site-specific management strategies are needed for effective disease control.  相似文献   

9.
Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes can influence the ability of their host to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector.  相似文献   

10.
The recent establishment of broadly applicable genetic transformation systems will allow the analysis of gene function in diverse insect species. This will increase our understanding of developmental and evolutionary biology. Furthermore, insect transgenesis will provide new strategies for insect pest management and methods to impair the transmission of pathogens by human disease vectors. However, these powerful techniques must be applied with great care to avoid harm to our environment.  相似文献   

11.
Vector-borne diseases impose enormous health and economical burdens throughout the world. Unfortunately, as insecticide and drug resistance spread, these burdens will increase unless new control measures are developed. Genetically modifying vectors to be incapable of transmitting parasites is one possible control strategy and much progress has been made towards this goal. Numerous effector molecules have been identified that interfere with parasite development in its insect vectors, and techniques for transforming the vectors with genes encoding these molecules have been established. While the ability to generate refractory vectors is close at hand, a mechanism for replacing a wild vector population with a refractory one remains elusive. This review examines the feasibility of using bacteria to deliver the anti-parasitic effector molecules to wild vector populations. The first half briefly examines paratransgenic approaches currently being tested in both the triatomine bug and tsetse fly. The second half explores the possibility of using midgut bacteria to control malaria transmission by Anopheles mosquitoes.  相似文献   

12.
疟疾、登革热等重大传染性蚊媒疾病严重危害人类健康,且目前缺乏有效的药物和疫苗,防治埃及伊蚊、冈比亚按蚊等媒介昆虫是控制和消除这些疾病的有效手段。化学杀虫剂的大规模使用在一定程度上控制了疾病的传播,但其抗药性和环境污染等问题也随之而来。分子生物学的飞速发展为昆虫不育技术(SIT)的更新及害虫防治提供了新的策略,由此发展起来的以释放携带显性致死基因昆虫(RIDL)为代表的一系列遗传不育技术为蚊虫种群防控提供了更加有效的选择。本文概述了遗传技术在蚊虫防控中的应用进展,包括蚊虫遗传防治的历史和策略,阐述了RIDL技术体系的原理,同时介绍了相关遗传控制品系和已经开展的田间释放研究,展示了遗传修饰不育技术在蚊媒疾病防治中的巨大潜力。  相似文献   

13.
Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are vectored by aphids. The identification of vector proteins mediating virus transmission is critical to develop sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Previously, we applied 2-D DIGE to an aphid filial generation 2 population to identify proteins correlated with the transmission phenotype that were stably inherited and expressed in the absence of the virus. In the present study, we examined the expression of the DIGE candidates in previously unstudied, field-collected aphid populations. We hypothesized that the expression of proteins involved in virus transmission could be clinically validated in unrelated, virus transmission-competent, field-collected aphid populations. All putative biomarkers were expressed in the field-collected biotypes, and the expression of nine of these aligned with the virus transmission-competent phenotype. The strong conservation of the expression of the biomarkers in multiple field-collected populations facilitates new and testable hypotheses concerning the genetics and biochemistry of virus transmission. Integration of these biomarkers into current aphid-scouting methodologies will enable rational strategies for vector control aimed at judicious use and development of precision pest control methods that reduce plant virus infection.  相似文献   

14.
15.
Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases.  相似文献   

16.
Host use by vectors is important in understanding the transmission of zoonotic diseases, which can affect humans, wildlife and domestic animals. Here, a synthesis of host exploitation patterns by kissing-bugs, vectors of Chagas disease, is presented. For this synthesis, an extensive literature review restricted to feeding sources analysed by precipitin tests was conducted. Modern tools from community ecology and multivariate statistics were used to determine patterns of segregation in host use. Rather than innate preferences for host species, host use by kissing-bugs is influenced by the habitats they colonise. One of the major limitations of studies on kissing-bug foraging has been the exclusive focus on the dominant vector species. We propose that expanding foraging studies to consider the community of vectors will substantially increase the understanding of Chagas disease transmission ecology. Our results indicate that host accessibility is a major factor that shapes the blood-foraging patterns of kissing-bugs. Therefore, from an applied perspective, measures that are directed at disrupting the contact between humans and kissing-bugs, such as housing improvement, are among the most desirable strategies for Chagas disease control.  相似文献   

17.
The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world.  相似文献   

18.
Approaches to control vector-borne diseases rarely focus on the interface between vector and microbial pathogen, but strategies aimed at disrupting the interactions required for transmission may lead to reductions in disease spread. We tested if the vector transmission of the plant-pathogenic bacterium Xylella fastidiosa was affected by three groups of molecules: lectins, carbohydrates, and antibodies. Although not comprehensively characterized, it is known that X. fastidiosa adhesins bind to carbohydrates, and that these interactions are important for initial cell attachment to vectors, which is required for bacterial transmission from host to host. Lectins with affinity to substrates expected to occur on the cuticular surface of vectors colonized by X. fastidiosa, such as wheat germ agglutinin, resulted in statistically significant reductions in transmission rate, as did carbohydrates with N-acetylglucosamine residues. Presumably, lectins bound to receptors on the vector required for cell adhesion/colonization, while carbohydrate-saturated adhesins on X. fastidiosa's cell surface. Furthermore, antibodies against X. fastidiosa whole cells, gum, and afimbrial adhesins also resulted in transmission blockage. However, no treatment resulted in the complete abolishment of transmission, suggesting that this is a complex biological process. This work illustrates the potential to block the transmission of vector-borne pathogens without directly affecting either organism.  相似文献   

19.
The mosquito genome: organization, evolution and manipulation   总被引:2,自引:0,他引:2  
Apart from the genetic flexibility of the vectors, impediments to the control of vector-borne diseases include the rapid spread of drug resistance throughout parasite populations, the increasing movement of people to and from disease-endemic regions and the limited funds and public health infrastructures of most developing countries. The widely used residual insecticides and antiparasitic drugs have been inadequate solutions to the problem of vector-borne disease control. New approaches are needed. The enormous impact of recent developments in molecular genetics on the understanding of basic biology and human disease has stimulated a re-examination of the prospects for genetic manipulation of vector populations as a means for reducing or eliminating vector-borne diseases, especially malarial. Although control scenarios that exploit this technology may never be realized, Nora Besansky and Frank Collins emphasize that the increase in knowledge of basic mosquito biology on which these ideas depend will inevitably stimulate novel approaches to the control of mosquito-borne diseases.  相似文献   

20.
Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号