首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Bacteriophage FC3-1 is one of several specific bacteriophages of Klebsiella pneumoniae C3 isolated in our laboratory. Unlike receptors for other Klebsiella phages, the bacteriophage FC3-1 receptor was shown to be lipopolysaccharide, specifically the polysaccharide fraction (O-antigen and core region). We concluded that capsular polysaccharide, outer membrane proteins, and lipid A were not involved in phage binding. Mutants resistant to this phage were isolated and were found to be devoid of lipopolysaccharide O-antigen by several criteria but to contain capsular material serologically identical to that of the wild type. The polysaccharide fraction was concluded to be the primary phage receptor, indicating that it is available to the phage.  相似文献   

2.
High-molecular weight lipopolysaccharide (O antigen enriched fraction) from Klebsiella pneumoniae was determined to be the receptor for bacteriophage FC3-1. A methodology for the identification of the lipopolysaccharide component involved in FC3-1 bacteriophage reception was used that is suitable for other phages and host bacteria.  相似文献   

3.
Growth temperature affects both the structure and the phage-inactivating capacity of Salmonella anatum A1 lipopolysaccharide. Whereas S. anatum cells normally synthesize smooth lipopolysaccharide when grown at physiological temperature (37 degrees C), a partial smooth-rough transition occurs when cells are grown at low temperature (20 to 25 degrees C). The synthesis at low growth temperature of lipopolysaccharide molecules lacking O-antigen was detected both by increased sensitivity of cells to the rough-specific bacteriophage Felix O-1 and by fractionation of oligosaccharides derived from lipopolysaccharide by mild acid hydrolysis. Growth temperature-induced changes in the structure of S. anatum A1 lipopolysaccharide also affected its ability to inactivate epsilon15, a bacteriophage that binds initially to the O-antigen portion of the molecule. Purified lipopolysaccharide prepared from cells grown at low growth temperature exhibited a higher in vitro phage-inactivating capacity than did lipopolysaccharide prepared from cells grown at physiological temperature (37 degrees C).  相似文献   

4.
Summary Acinetobacter calcoaceticusRAG-1 cells lacking the emulsan capsule on the cell surface were obtained by two methods; a) by selecting for mutants that lack emulsan with a specific phage and b) by removal of the emulsan capsule from wild type cells with a specific emulsan depolymerase. Emulsan deficient cells obtained by either method become deficient in the adsorption of phage ap3 and sensitive to a newly isolated bacteriophage, nø. When RAG-1 cells were first treated with emulsan depolymerase and subsequently incubated without the enzyme, regeneration of the cell-associated emulsan was correlated with an increase in phage ap3 adsorption and an inhibition in phage nø adsorption. By partial regeneration of cell surface emulsan, a physiological state was obtained in which RAG-1 cells were sensitive to and efficiently adsorbed found phages. Enzyme-treated RAG-1 cells were found to be more adherent to hexadecane than the untreated RAG-1 cells. The data indicate that in addition to its function as the ap3 receptor, cell-associated emulsan masks the expression of other cell-surface determinant(s) which function(s) as: (i) receptor for bacteriophage nø, and (ii) cell-surface sites which enhance adherence to hydrophobic surfaces.Present address: Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA  相似文献   

5.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h(-1) and by 3 orders of magnitude at a lower dilution rate (0.327 h(-1)). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h(-1) and persisted until the end of the experiment (approximately 200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   

6.
FC3-10 is a Klebsiella spp. specific bacteriophage isolated on a rough mutant (strain KT707, chemotype Rd) of K. pneumoniae C3. The bacteriophage receptor for this phage was shown to be the low-molecular mass lipopolysaccharide (LPS) fraction (LPS-core oligosaccharides), specifically the heptose content of the LPS inner-core. This is the first phage isolated on Klebsiella, the receptor for which is the LPS-core. This phage was unable to plate on Salmonella typhimurium LPS mutants with chemotypes Rd2 or Re showing incomplete or no heptose content on their LPS-core, respectively. Spontaneous phage-resistant mutants from different Klebsiella strains were deep-rough LPS mutants or encapsulated revertants from unencapsulated mutant strains.  相似文献   

7.
The kinetics of in vivo expression of the polysialosyl (K1) capsular antigen in Escherichia coli has been studied. Growth of E. coli K1 strains at 15 degrees C prevents K1 polysaccharide synthesis (F. A. Troy and M. A. McCloskey, J. Biol. Chem. 254:7377-7387, 1979). Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C. The early expression and resultant morphology of K1 capsular antigen was monitored in temperature upshift experiments by using electron microscopy. Morphological stabilization of the capsule was achieved by treatment of cells with an antiserum specific for the alpha, 2-8-linked polysialosyl antigen. The kinetics of K1 capsule expression in growing cells was measured by bacteriophage adsorption with phage K1F, which required the K1 capsule for binding. The results of temperature upshift experiments showed that capsule first appeared on the cell surface after 10 min. Subsequent bacteriophage binding increased linearly with time until a fully encapsulated state was reached 45 min after upshift. The initiation of K1 capsule appearance was dependent on protein synthesis and the addition of chloramphenicol before temperature upshift prevented any expression of the K1 antigen. Chloramphenicol reduced the rate of K1 synthesis when added after temperature upshift. We conclude from these results that protein synthesis is a prerequisite for activation of capsule expression in vivo, but not for subsequent elongation of polysialosyl chains.  相似文献   

8.
Phage H22 was isolated from sewage using Pseudomonas aeruginosa NCTC 8505 (serotype 0:3) as the host. Although not O-specific, this phage was found to have lipopolysaccharide (LPS) as a receptor. The broad host-range and lack of O-specificity of the phage suggested that its receptor site was in the core region of the LPS. Phage H22 had a Bradley type A structure. It was unaffected by chloroform and diethyl ether, and was stable between pH 5 and 8 and in the temperature range 0 to 60 degrees C. The adsorption rate constant was 14.6 X 10(-9) ml min-1. The phage had a latent period of 43 min, with a rise time of 18 min and a burst size of 6. The adsorption of phage to whole cells and LPS occurred over a broad pH range. Maximum adsorption occurred at 50 degrees C and pH 7.5 in the presence of 0.001 M Ca2+.  相似文献   

9.
Yep-phi is a T7-related bacteriophage specific to Yersinia pestis, and it is routinely used in the identification of Y. pestis in China. Yep-phi infects Y. pestis grown at both 20°C and 37°C. It is inactive in other Yersinia species irrespective of the growth temperature. Based on phage adsorption, phage plaque formation, affinity chromatography, and Western blot assays, the outer membrane proteins of Y. pestis Ail and OmpF were identified to be involved, in addition to the rough lipopolysaccharide, in the adsorption of Yep-phi. The phage tail fiber protein specifically interacts with Ail and OmpF proteins, and residues 518N, 519N, and 523S of the phage tail fiber protein are essential for the interaction with OmpF, whereas residues 518N, 519N, 522C, and 523S are essential for the interaction with Ail. This is the first report to demonstrate that membrane-bound proteins are involved in the adsorption of a T7-related bacteriophage. The observations highlight the importance of the tail fiber protein in the evolution and function of various complex phage systems and provide insights into phage-bacterium interactions.  相似文献   

10.
The development of bacteriophage T7 was examined in an Escherichia coli double mutant defective for the two major apurinic, apyrimidinic endonucleases (exonuclease III and endonuclease IV, xth nfo). In cells infected with phages containing apurinic sites, the defect in repair enzymes led to a decrease of phage survival and a total absence of bacterial DNA degradation and of phage DNA synthesis. These results directly demonstrate the toxic action of apurinic sites on bacteriophage T7 at the intracellular level and its alleviation by DNA repair. In addition, untreated T7 phage unexpectedly displayed reduced plating efficiency and decreased DNA synthesis in the xth nfo double mutant.  相似文献   

11.
[背景]噬菌体具有特定的杀菌能力,对生态和细菌的进化具有重要影响。近年来由于多重耐药细菌的全球出现,噬菌体疗法逐渐引起了人们的关注。[目的]对一株新型裂解K63荚膜型肺炎克雷伯菌的噬菌体vB_KpnP_IME308进行生物学特性研究、测序和比较基因组学的分析。[方法]以一株从临床分离到的肺炎克雷伯菌为宿主菌分离噬菌体,应用双层平板法进行噬菌体最佳感染复数(optimal multiplicity of infection)、一步生长曲线(one-step growth curve)、温度以及pH敏感性实验测定,纯化噬菌体并通过透射电镜观察噬菌体形态;应用标准的苯酚-氯仿提取方案提取噬菌体全基因组,使用Illumina MiSeq测序平台进行噬菌体全基因组测序,测序后对噬菌体全基因组序列进行组装、注释、进化和比较基因组学分析。[结果]分离到一株新型的肺炎克雷伯菌噬菌体,命名为vB_KpnP_IME308;其最佳感染复数为0.001,一步生长曲线结果显示,其感染宿主菌的潜伏期约为20 min,裂解期约为80 min,平均裂解量330PFU/cell;噬菌体vB_KpnP_IME308在4-50℃和pH 5.0-10.0范围内稳定;电镜观察该噬菌体属于短尾噬菌体科(Podoviridae)。基因组测序结果表明,噬菌体基因组全长为43 091bp,(G+C)mol%含量为53.9%,(A+T)mol%含量为46.1%。BLASTn比对结果表明,该噬菌体与目前已知噬菌体基因组仅84%区域有相似性。噬菌体进化树结果表明该噬菌体属于Autographivirinae亚科的Drulisvirus属的成员。[结论]从医院污水中分离鉴定了一株新型的肺炎克雷伯菌噬菌体,表征并分析了噬菌体全基因组序列,这些结果均表明该噬菌体具有开发为抗肺炎克雷伯菌制剂的潜力,为噬菌体治疗多重耐药细菌感染奠定了基础。  相似文献   

12.
A bacteriophage of an aerobic, gram-negative, rod-shaped halophilic bacterium, provisionally named Pseudomonas sp. G3, is described. The phage has a head and a tail and is similar in appearance to Salmonella phage Beccles. It infects its bacterial host at all salt concentrations in which the bacteirum is able to grow. In contrast to phages of halophilic archaebacteria, the newly-described phage is relatively stable in the absence of salt. It also infects Vibrio costicola and two unidentified halophilic eubacteria.Abbreviations PPT proteose peptone-tryptone medium - pfu plaque-forming unit - G+C guanine + cytidine content, mol %  相似文献   

13.
Bacteriophage phiYeO3-12 is a T7/T3-related lytic phage that naturally infects Yersinia enterocolitica serotype O:3 strains by using the lipopolysaccharide O polysaccharide (O antigen) as its receptor. The phage genome is a 39,600-bp-long linear, double-stranded DNA molecule that contains 58 genes. The roles of many of the genes are currently unknown. To identify nonessential genes, the isolated phage DNA was subjected to MuA transposase-catalyzed in vitro transposon insertion mutagenesis with a lacZ' gene-containing reporter transposon. Following electroporation into Escherichia coli DH10B and subsequent infection of E. coli JM109/pAY100, a strain that expresses the Y. enterocolitica O:3 O antigen on its surface, mutant phage clones were identified by their beta-galactosidase activity, manifested as a blue color on indicator plates. Transposon insertions were mapped in a total of 11 genes located in the early and middle regions of the phage genome. All of the mutants had efficiencies of plating (EOPs) and fitnesses identical to those of the wild-type phage when grown on E. coli JM109/pAY100. However, certain mutants exhibited altered phenotypes when grown on Y. enterocolitica O:3. Transposon insertions in genes 0.3 to 0.7 decreased the EOP on Y. enterocolitica O:3, while the corresponding deletions did not, suggesting that the low EOP was not caused by inactivation of the genes per se. Instead, it was shown that in these mutants the low EOP was due to the delayed expression of gene 1, coding for RNA polymerase. On the other hand, inactivation of gene 1.3 or 3.5 by either transposon insertion or deletion decreased phage fitness when grown on Y. enterocolitica. These results indicate that phiYeO3-12 has adapted to utilize Y. enterocolitica as its host and that these adaptations include the products of genes 1.3 and 3.5, DNA ligase and lysozyme, respectively.  相似文献   

14.
A group of 12 Pseudomonas aeruginosa virulent bacteriophages of different origin scored with regard to the plaque phenotype are assigned to PB1-like species based on the similarity in respect to morphology of particles and high DNA homology. Phages differ in restriction profile and the set of capsid major proteins. For the purpose of studying adsorption properties of these phages, 20 random spontaneous mutants of P. aeruginosa PAO1 with the disturbed adsorption placed in two groups were isolated. Mutants of the first group completely lost the ability to adsorb all phages of this species. It is assumed that their adsorption receptors are functionally inactive or lost at all, because the attempt to isolate phage mutants or detect natural phages of PB1 species capable of overcoming resistance of these bacteria failed. The second group includes five bacterial mutants resistant to the majority of phages belonging to species PB1, These mutants maintain the vigorous growth of phage SN and poor growth of phage 9/3, which forms turbid plaques with low efficiency of plating. In the background of weak growth, phage 9/3 yields plaques that grew well. The examination of the progeny of phage 9/3, which can grow on these bacteria, showed that its DNA differed from DNA of the original phage 9/3 by restriction profile and is identical to DNA of phage PB1 with regard to this trait. Data supported a suggestion that this phage variant resulted from recombination of phage 9/3 DNA with the locus of P. aeruginosa PAO1 genome encoding the bacteriocinogenic factor R. However, this variant of phage 9/3 did not manifest the ability to grow on phage-resistant mutants of the first group. Possible reasons for the difference between phages 9/3 or SN and the remaining phages of PB1 species are discussed. A preliminary formal scheme of the modular structure for adsorption receptors on the surface of P. aeruginosa PAO1 bacteria was constructed based on the analysis of growth of some other phage species on adsorption mutants of the first type.  相似文献   

15.
细菌与噬菌体相互抵抗机制研究进展   总被引:1,自引:1,他引:0  
噬菌体作为一种侵染细菌的病毒,能够特异性识别宿主细菌。近年来,抗生素的过度使用导致耐药细菌的出现,噬菌体有望成为对抗耐药细菌的新武器。在细菌与噬菌体长期共进化过程中,二者都演化出一系列抵御策略。本文从抑制噬菌体吸附、阻止噬菌体DNA进入、切割噬菌体基因组、流产感染以及群体感应对噬菌体的调控等方面,对细菌抵抗噬菌体的机制以及噬菌体应对细菌的策略进行了综述,同时还列举了细菌和噬菌体相互抵抗机制的检测方法,以期为噬菌体在细菌控制中的应用以及探究细菌抵抗噬菌体的机制提供理论依据。  相似文献   

16.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (~200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   

17.
Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene "module" at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.  相似文献   

18.
The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.  相似文献   

19.
A group of 12 Pseudomonas aeruginosa virulent bacteriophages of different origin scored with regard to the plaque phenotype are assigned to PB1-like species based on the similarity in respect to morphology of particles and high DNA homology. Phages differ in restriction profile and the set of capsid major proteins. For the purpose of studying adsorption properties of these phages, 20 random spontaneous mutants of P. aeruginosa PAO1 with the disturbed adsorption placed in two groups were isolated. Mutants of the first group completely lost the ability to adsorb all phages of this species. It is assumed that their adsorption receptors are functionally inactive or lost at all, because the attempt to isolate phage mutants or detect natural phages of PB1 species capable of overcoming resistance of these bacteria failed. The second group includes five bacterial mutants resistant to the majority of phages belonging to species PB1. These mutants maintain the vigorous growth of phage SN and poor growth of phage 9/3, which forms turbid plaques with low efficiency of plating. In the background of weak growth, phage 9/3 yields plaques that grew well. The examination of the progeny of phage 9/3, which can grow on these bacteria, showed that its DNA differed from DNA of the original phage 9/3 by restriction profile and is identical to DNA of phage PB1 with regard to this trait. Data supported a suggestion that this phage variant resulted from recombination of phage 9/3 DNA with the locus of P. aeruginosa PAO1 genome encoding the bacteriocinogenic factor R. However, this variant of phage 9/3 did not manifest the ability to grow on phage-resistant mutants of the first group. Possible reasons for the difference between phages 9/3 or SN and the remaining phages of PB1 species are discussed. A preliminary formal scheme of the modular structure for adsorption receptors on the surface of P. aeruginosa PAO1 bacteria was constructed based on the analysis of growth of some other phage species on adsorption mutants of the first type.  相似文献   

20.

Background

Acinetobacter baumannii is known for its ability to develop resistance to the major groups of antibiotics, form biofilms, and survive for long periods in hospital environments. The prevalence of infections caused by multidrug-resistant A. baumannii is a significant problem for the modern health care system, and application of lytic bacteriophages for controlling this pathogen may become a solution.

Methodology/Principal Findings

In this study, using atomic force microscopy (AFM) and microbiological assessment we have investigated A. baumannii bacteriophage AP22, which has been recently described. AFM has revealed the morphology of bacteriophage AP22, adsorbed on the surfaces of mica, graphite and host bacterial cells. Besides, morphological changes of bacteriophage AP22-infected A. baumannii cells were characterized at different stages of the lytic cycle, from phage adsorption to the cell lysis. The phage latent period, estimated from AFM was in good agreement with that obtained by microbiological methods (40 min). Bacteriophage AP22, whose head diameter is 62±1 nm and tail length is 88±9 nm, was shown to disperse A. baumannii aggregates and adsorb to the bacterial surface right from the first minute of their mutual incubation at 37°C.

Conclusions/Significance

High rate of bacteriophage AP22 specific adsorption and its ability to disperse bacterial aggregates make this phage very promising for biomedical antimicrobial applications. Complementing microbiological results with AFM data, we demonstrate an effective approach, which allows not only comparing independently obtained characteristics of the lytic cycle but also visualizing the infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号