首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation.  相似文献   

3.
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60–90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation.  相似文献   

4.
异种移植的病毒安全性研究进展   总被引:1,自引:0,他引:1  
猪-人异种移植有望解决人源器官短缺的严重问题。然而,以前病毒(provirus)形式整合入猪基因组中的猪内源性反转录病毒(porcine endogenous retrovirus,PERV)难以去除,PERV有可能通过异种移植传播给人类,甚至产生新的病毒性疾病。本文回顾了PERV与异种移植病毒安全性及我国特有小型猪中PERV的相关研究。  相似文献   

5.
湖南沙子岭猪内源性逆转录病毒的研究   总被引:5,自引:1,他引:5  
邢晓为  薛立群  黄生强  黎淑娟  王维 《遗传》2006,28(7):799-804
为评价从猪到人异种移植的生物安全性提供依据,从湖南沙子岭猪的保种群内随机采集31头个体的耳样组织,应用PCR和RT-PCR技术分别检测这些组织中内源性逆转录病毒(porcine endogenous retrovirus,PERV)的前病毒DNA和mRNA,并对PCR扩增的灵敏性进行评估。多组织RT-PCR检测3头沙子岭猪肾、心、肝、肺、脾 等组织中PERV的表达情况,了解其在各组织中的分布情况;最后,扩增、测序该猪种的env基因,结果用NCBI中的BLAST软件进行分析。PCR和RT-PCR结果表明,所检测的31头沙子岭猪均带有PERV前病毒DNA,耳样组织中均有PERV mRNA表达,其中有2头个体携带 env-A、env-B、env-C 3种囊膜蛋白基因,而其余的29头个体只带有env-A、env-B 两种囊膜蛋白基因,未检测到env-C基因。多组织RT-PCR扩增结果表明,3头沙子岭猪的肾、心、肝、肺、脾等组织中,pol、gag、env-A、env-B 基因均有表达,未检测到env-C基因表达。测序沙子岭猪的env基因,结果发现,沙子岭猪env-B 和env-C基因与其他猪种序列比较分别存在2 和10个碱基的差异,而env-A基因序列没有差异,说明不同的猪种之间 env基因存在多态性。以上结果表明,沙子岭猪种群携带PERV,其亚型主要以PERV-A,B为主;PERV在该猪种肾、心、肝、肺、脾等多种组织中的分布没有明显组织特异性,且93.5 % (29/31)个体表现为 env-C 基因缺失,提示沙子岭猪作为候选猪种可能在异种移植中具有较好的应用前景。  相似文献   

6.
7.
8.
猪作为异种器官移植供体的研究进展   总被引:8,自引:0,他引:8  
异种器官移植是现代和未来医学的重要研究领域之一,转基因猪有望为人类提供移植所需的器官,本对猪作为异种器官移植供体的可能性,移植引起的免疫排斥反应及病毒感染等问题进行了综述和讨论。  相似文献   

9.
The human APOBEC3G protein is an innate anti-viral factor that can dominantly inhibit the replication of some endogenous and exogenous retroviruses. The prospects of purposefully harnessing such an anti-viral defense are under investigation. Here, long-term co-culture experiments were used to show that porcine endogenous retrovirus (PERV) transmission from pig to human cells is reduced to nearly undetectable levels by expressing human APOBEC3G in virus-producing pig kidney cells. Inhibition occurred by a deamination-independent mechanism, likely after particle production but before the virus could immortalize by integration into human genomic DNA. PERV inhibition did not require the DNA cytosine deaminase activity of APOBEC3G and, correspondingly, APOBEC3G-attributable hypermutations were not detected. In contrast, over-expression of the sole endogenous APOBEC3 protein of pigs failed to interfere significantly with PERV transmission. Together, these data constitute the first proof-of-principle demonstration that APOBEC3 proteins can be used to fortify the innate anti-viral defenses of cells to prevent the zoonotic transmission of an endogenous retrovirus. These studies suggest that human APOBEC3G-transgenic pigs will provide safer, PERV-less xenotransplantation resources and that analogous cross-species APOBEC3-dependent restriction strategies may be useful for thwarting other endogenous as well as exogenous retrovirus infections.  相似文献   

10.
The endogenous retrovirus (ERV) is one kind ofretroviruses that integrated in the genome in the formof provirus and replicates with the proliferation of hostcells. The ERV may play a significant role in the evo-lution, pathology and physiology of animals[1]. Now,proviral sequences of ERV have been found in the ge-nome of many vertebrates, and the release of virionshas also been detected both in vivo and in vitro. Porcine endogenous retrovirus (PERV) embeddedin the genome of pigs belo…  相似文献   

11.
The provirus DNA sequence of porcine endogenous retrovirus (PERV) distributed in the pig genome is the major obstacle that restricts the swine as the organ donors in xenotransplantation, and the copy number of PERV varies greatly among different breeds and individuals. In the experiment, 67 healthy, female Chinese Experimental Mini-Pigs (CEMPs) aged at 3–6 months were selected from the Animal Husbandry Station of China Agricultural University, the copy number of PERV and types of envelope protein gene (env) were then investigated by means of PCR analysis and Southern blotting. It is showed that the distribution of types of envelope protein gene in Landrace and CEMPs makes little difference, but the proportion of individuals carrying two types of envelope protein gene (env-A and env-B, which is denoted as env-AB) is much larger than those which carry only one type of envelope protein gene (env-A or env-B). Meanwhile, two endogenous retrovirus free pigs were found for the first time during our research, and the copy number of others is relatively low, which is about 10 to 20. All the results illuminate the genetic diversity of indigenous pig breeds in China and the potential of CEMPs to serve as organ donors in xenotransplantation.  相似文献   

12.
猪皮肤成纤维细胞PERV体外和体内感染性的研究   总被引:1,自引:0,他引:1  
为了解猪皮肤成纤维细胞PERV在体外和体内的感染性,通过建立猪皮肤成纤维细胞系,将所建细胞系与人胚胎肾293细胞体外共培养,并移植于严重联合免疫缺陷鼠(SCID鼠)皮下进行猪皮肤成纤维细胞PERV的体外和体内感染性实验。结果表明,猪皮肤成纤维细胞与人胚胎肾细胞共培养过程中,猪内源性逆转录病毒感染人胚胎肾细胞,进一步证实和拓宽了猪细胞PERV感染人细胞的范畴;猪皮肤成纤维细胞移植SCID鼠皮下后,导致SCID鼠发生猪细胞微嵌合(78.57%)和PERV在体内感染(85.71%)并且波及远离移植部位的多种组织或器官,但是并未检测出SCID鼠组织中表达PERV env RNA。这就证实了猪皮肤成纤维细胞PERV的体外感染性和在小鼠体内的感染性,但未能找到PERV在体内活跃复制的明显证据。因而,在猪异种移植过程中PERV传播的潜在危险仍然是必须高度重视的生物安全性问题。  相似文献   

13.
Xenotransplantation has been proposed as a solution to the shortage of suitable human donors for transplantation and pigs are currently favoured as donor animals. However, xenotransplantation may be associated with the transmission of zoonotic microorganisms. Whereas most porcine microorganisms representing a risk for the human recipient may be eliminated by designated pathogen free breeding, multiple copies of porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated this way. PERVs are released as infectious particles and infect human cells. The zinc finger nuclease (ZFN) technology allows knocking out specifically cellular genes, however it was not yet used to eliminate multiple integrated proviral sequences with a strong conservation in the target sequence. To reduce the risk of horizontal PERV transmission and to knock out as many as possible proviruses, for the first time the powerful tool of the ZFN technology was used. ZFN were designed to bind specifically to sequences conserved in all known replication-competent proviruses. Expression and transport of the ZFN into the nucleus was shown by Western blot analysis, co-localisation analysis, PLA and FRET. Survival of transfected cells was analysed using fluorescent ZFN and cell counting. After transfection a strong expression of the ZFN proteins and a co-localisation of the expressed ZFN proteins were shown. However, expression of the ZFN was found to be extremely toxic for the transfected cells. The induced cytotoxicity was likely due to the specific cutting of the high copy number of the PERV proviruses, which is also commonly observed when ZFN with low specificity cleave numerous off-target sites in a genome. This is the first attempt to knock out multiple, nearly identical, genes in a cellular genome using ZFN. The attempt failed, and other strategies should be used to prevent PERV transmission.  相似文献   

14.
The potential transmission of porcine endogenous retroviruses (PERVs) has raised concern in the development of porcine xenotransplantation products. Our previous studies have resulted in the identification of animals within a research herd of inbred miniature swine that lack the capacity to transmit PERV to human cells in vitro. In contrast, other animals were capable of PERV transmission. The PERVs that were transmitted to human cells are recombinants between PERV-A and PERV-C in the post-VRA region of the envelope (B. A. Oldmixon, J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience, J. Virol. 76:3045-3048, 2002); these viruses we term PERV-A/C. This observation prompted us to determine whether these human-tropic replication-competent (HTRC) PERV-A/C recombinants were present in the genomic DNA of these miniature swine. Genomic DNA libraries were generated from one miniature swine that transmitted HTRC PERV as well as from one miniature swine that did not transmit HTRC PERV. HTRC PERV-A/C proviruses were not identified in the germ line DNAs of these pigs by using genomic mapping. Similarly, although PERV-A loci were identified in both libraries that possessed long env open reading frames, the Env proteins encoded by these loci were nonfunctional according to pseudotype assays. In the absence of a germ line source for HTRC PERV, further studies are warranted to assess the mechanisms by which HTRC PERV can be generated. Once identified, it may prove possible to generate animals with further reduced potential to produce HTRC PERV.  相似文献   

15.
Transgenic pigs are promising donor organisms for xenotransplantation as they share many anatomical and physiological characteristics with humans. The most profound barrier to pig‐to‐primate xenotransplantation is the rejection of the grafted organ by a cascade of immune mechanisms commonly referred to as hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), immune cell‐mediated rejection, and chronic rejection. Various strategies for the genetic modification of pigs facilitate tailoring them to be donors for organ transplantation. Genetically modified pigs lacking alpha‐1,3‐Gal epitopes, the major xenoantigens triggering HAR of pig‐to‐primate xenografts, are considered to be the basis for further genetic modifications that can address other rejection mechanisms and incompatibilities between the porcine and primate blood coagulation systems. These modifications include expression of human complement regulatory proteins, CD39, endothelial protein C receptor, heme oxygenase 1, thrombomodulin, tissue factor pathway inhibitor as well as modulators of the cellular immune system such as human TNF alpha‐related apoptosis inducing ligand, HLA‐E/beta‐2‐microglobulin, and CTLA‐4Ig. In addition, transgenic strategies have been developed to reduce the potential risk of infections by endogenous porcine retroviruses. The protective efficacy of all these strategies is strictly dependent on a sufficiently high expression level of the respective factors with the required spatial distribution. This review provides an overview of the transgenic approaches that have been used to generate donor pigs for xenotransplantation, as well as their biological effects in in vitro tests and in preclinical transplantation studies. A future challenge will be to combine the most important and efficient genetic modifications in multi‐transgenic pigs for clinical xenotransplantation. Mol. Reprod. Dev. 77: 209–221, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.

Background

Xenotransplantation has drawn increased attention in recent years as a potential solution to the scarcity of human source donor organs. Researchers have highlighted the need to characterize the influence of porcine endogenous retroviruses (PERV) in xenotransplantation. Screening and analyzing the presence and subtype of PERV in donor source animal breeds could provide basic parameters to evaluate the biological safety of xenotransplantation from pigs to humans. We bred a new miniature porcine herd (XENO-1) after decades of investigation, the herd was purpose bred to produce a potential donor animal source for xenotransplantation. To this end we studied the animals’ PERV expression characteristics.

Methods

We randomly selected 37 animals of the herd, PCR and RT-PCR based on specific primers were utilized to determine their PERV viral subtype. High fidelity PCR and restriction enzyme digestion were employed for variants detection. To thoroughly understand the PERV expression pattern, quantitative PCR was applied to measure mRNA expression levels in different tissues, At last, transfection capacity was assessed using a in vitro co-culture system.

Results

Our results revealed that the XENO-1 herd was free of PERV-C and exhibited low levels of PERVs in different tissues compared to commercial pig (landrace). The XENO-1 herd showed unique variants of A/B recombination. In addition, even though there were A/B variants in the XENO-1 herd, co-culturing revealed no evidence of PERV transmission from XENO-1 tissue to human cells.

Conclusion

Overall, Our results displayed an unique PERV expression pattern in a new pig herd and demonstrated its non-transfection capacity in vitro. Data in the research indicate that XENO-1 animals can serve as a better potential donor source for xenotransplantation.
  相似文献   

17.
猪肝细胞和培养上清液中猪内源性逆转录病毒的检测   总被引:3,自引:0,他引:3  
建立了猪肝细胞及其培养上清液中猪内源性逆转录病毒(PERV)的检测方法,探讨了其在猪肝细胞生物人工肝应用中的意义。以PERV gag基因为靶序列,选用特定的引物,PCR检测中国实验用小型猪肝细胞PERV前病毒DNA;RT-PCR检测猪、犬、大鼠以及HBV阳性病人血清和猪肝细胞培养6h、24h时的上清液PERV RNA,同时检测猪肝细胞猪线粒体DNA(mtDNA)。研究结果表明:检测5份中国实验用小型猪血清、肝细胞及培养猪肝细胞24h时的上清液PERV均为阳性,而5份培养猪肝细胞6h时的上清液、5份犬血清、5份大鼠血清和5份HBV阳性病人血清PERV检测结果均为阴性,猪肝细胞中均可检测到猪mtDNA。因此,中国实验用小型猪肝细胞携带PERV;PERV可释放到血清中;猪肝细胞培养24h后该病毒颗粒已释放到培养液中;PCR和RT-PCR方法检测PERV具有特异性强、简便的特点。  相似文献   

18.
Argaw T  Wilson CA 《Journal of virology》2012,86(17):9096-9104
Replication-competent porcine endogenous retroviruses (PERVs) are either human cell tropic (PERV-A and PERV-B) or non-human cell tropic (PERV-C). We previously demonstrated that PERV in vitro cell tropism is modulated by 2 residues within the C terminus of SU and that the PERV receptor binding domain (RBD) extends beyond the variable regions A and B (VRA and VRB, respectively), to include the proline rich-region (PRR) of SU (M. Gemeniano et al., Virology 346:108-117, 2000; T. Argaw et al., J. Virol. 82:7483-7489, 2008). The present study aimed to identify the specific elements within the PERV RBD that interact with the C-terminal elements of SU to facilitate human cell infection. We constructed a series of chimeric and mutated envelopes between PERV-A and PERV-C and using pseudotyped retroviral vectors to map the human cell tropism-determining sequences within the PERV RBD. We show that the PRR from PERV-A is both necessary and sufficient to allow human cell infection when substituted into the homologous region of the PERV-C envelope carrying two C-terminal amino acid substitutions shown to influence human cell tropism, Q374R and I412V (PERV-Crv). Furthermore, substitution of a single amino acid residue in the PRR of the non-human-tropic PERV-Crv envelope allows vectors carrying this envelope to infect human cells. Receptor interference assays showed that these modified PERV-C envelopes do not bind either of the human PERV-A receptors, suggesting the presence of a distinct human PERV-C receptor. Finally, vectors carrying these modified PERV-C envelopes infect primary human endothelial cells, a cell type likely to be exposed to PERV in clinical use of certain porcine xenotransplantation products.  相似文献   

19.
The replication of porcine endogenous retrovirus subgroup A (PERV-A) and PERV-B in certain human cell lines indicates that PERV may pose an infectious risk in clinical xenotransplantation. We have previously reported that human-tropic PERVs isolated from infected human cells following cocultivation with miniature swine peripheral blood mononuclear cells (PBMC) are recombinants of PERV-A with PERV-C. Here, we report that these recombinants are exogenous viruses in miniature swine; i.e., they are not present in the germ line DNA. These viruses were invariably present in miniature swine that transmitted PERV to human cells and were also identified in some miniature swine that lacked this ability. These data, together with the demonstration of the absence of both replication-competent PERV-A and recombinant PERV-A/C loci in the genome of miniature swine (L. Scobie, S. Taylor, J. C. Wood, K. M. Suling, G. Quinn, C. Patience, H.-J. Schuurman, and D. E. Onions, J. Virol. 78:2502-2509, 2004), indicate that exogenous PERV is the principal source of human-tropic virus in these animals. Interestingly, strong expression of PERV-C in PBMC correlated with an ability of the PBMC to transmit PERV-A/C recombinants in vitro, indicating that PERV-C may be an important factor affecting the production of human-tropic PERV. In light of these observations, the safety of clinical xenotransplantation from miniature swine will be most enhanced by the utilization of source animals that do not transmit PERV to either human or porcine cells. Such animals were identified within the miniature swine herd and may further enhance the safety of clinical xenotransplantation.  相似文献   

20.
Infection of nonhuman primate cells by pig endogenous retrovirus   总被引:6,自引:0,他引:6       下载免费PDF全文
The ongoing shortage of human donor organs for transplantation has catalyzed new interest in the application of pig organs (xenotransplantation). One of the biggest concerns about the transplantation of porcine grafts into humans is the transmission of pig endogenous retroviruses (PERV) to the recipients or even to other members of the community. Although nonhuman primate models are excellently suited to mimic clinical xenotransplantation settings, their value for risk assessment of PERV transmission at xenotransplantation is questionable since all of the primate cell lines tested so far have been found to be nonpermissive for PERV infection. Here we demonstrate that human, gorilla, and Papio hamadryas primary skin fibroblasts and also baboon B-cell lines are permissive for PERV infection. This suggests that a reevaluation of the suitability of the baboon model for risk assessment in xenotransplantation is critical at this point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号