首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tick-borne encephalitis virus (TBEV) causes severe encephalitis in humans. It is endemic in one area of Japan; however no commercial vaccine is available in that country. In this Japan-based study, the efficacy of subviral particles (SPs) of TBEV administered by needle-free injector was evaluated as a vaccine candidate. Inoculation with SP-encoding DNA by needle-free injector induced neutralizing antibodies more efficiently than when administered by needle and syringe, and mice vaccinated with one dose by needle-free injector survived challenge with a lethal dose of TBEV. These results suggest that SP vaccines delivered by needle-free injector can protect against TBEV infection.  相似文献   

2.
Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8–16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.  相似文献   

3.
A tick-borne encephalitis (TBE) patient was found in Hokkaido in 1993, and TBE viruses were isolated from animals and ticks in our previous studies. To develop a diagnostic reagent to identify TBE viruses, monoclonal antibodies (Mabs) were produced against the TBE virus strain Hokkaido (Oshima 5-10). Seven Mabs were obtained which reacted with the envelope protein of the Oshima 5-10 strain. These Mabs were flavivirus genus-specific, TBE virus complex-specific or TBE virus type-specific. The Mabs are applicable for identification of TBE virus strains.  相似文献   

4.
The morbidity of tick‐borne encephalitis (TBE) varies yearly by as much as 10‐fold among the people of Western Siberia. This long‐term variation is dependent on many factors such as the density of the tick populations, the prevalence of TBE virus (TBEV) among sub‐adult ticks, the yearly virulence of the TBEV, and prophylactic measures. Here we highlight the role of small mammal hosts in the circulation of TBEV through the ecosystem. Refining classical models of non‐viremic horizontal transmission, we emphasize the recently understood fact that the physiological and immunological status of the small mammal hosts affects the tick and virus‐host interactions. In addition to its theoretical interest, our approach may lead to some practical improvements in the precision of epidemiological forecasts and perhaps in forestalling the severity of outbreaks of TBE, or, at least, in forewarning medical authorities and the general public of impending TBE outbreaks.  相似文献   

5.
Tick-borne encephalitis (TBE) virus causes severe encephalitis with serious sequelae in humans. An epizootiological survey of wild rodents is effective to detect TBE virus-endemic areas; however, limited serological diagnostic methods are available to detect anti-TBE virus antibodies in wild rodents. In this study, ELISAs for the detection of rodent antibodies against the TBE virus were developed using two recombinant proteins, domain III of the E protein (EdIII) and subviral particles (SPs), as the antigens. As compared with the neutralization test, the ELISA using EdIII had 77.1% sensitivity and 80.0% specificity, and the ELISA using SPs had 91.4% sensitivity and 100% specificity. Furthermore, when the ELISAs were applied to the epizootiological survey in the TBE virus-endemic area, both of the ELISAs was able to detect wild rodents with TBE virus-specific antibodies. This is the first study to show that ELISAs using recombinant antigens can be safe and useful in the detection of TBE virus-infected wild rodents in epizootiological research.  相似文献   

6.
The varicella–zoster virus (VZV) Oka vaccine strain (vOka) is a highly immunogenic and safe live vaccine that has long been used worldwide. Because its genome is large, making it suitable for inserting foreign genes, vOka is considered a candidate vector for novel polyvalent vaccines. Previously, a recombinant vOka, rvOka‐HN, that expresses mumps virus (MuV) hemagglutinin‐neuraminidase (HN) was generated by the present team. rvOka‐HN induces production of neutralizing antibodies against MuV in guinea pigs. MuV also expresses fusion (F) protein, which is important for inducing neutralizing antibodies, in its viral envelope. To induce a more robust immune response against MuV than that obtained with rvOka‐HN, here an rvOka expressing both HN and F (rvOka‐HN‐F) was generated. However, co‐expression of HN and F caused the infected cells to form syncytia, which reduced virus titers. To reduce the amount of cell fusion, an rvOka expressing HN and a mutant F, F(S195Y) were generated. Almost no syncytia formed among the rvOka‐HN‐F(S195Y)‐infected cells and the growth of rvOka‐HN‐F(S195Y) was similar to that of the original vOka clone. Moreover, replacement of serine 195 with tyrosine had no effect on the immunogenicity of F in mice and guinea pigs. Although obvious augmentation of neutralizing antibody production was not observed after adding F protein to vOka‐HN, the anti‐F antibodies did have neutralizing activity. These data suggest that F protein contributes to induction of immune protection against MuV. Therefore this recombinant virus is a promising candidate vaccine for polyvalent protection against both VZV and MuV.  相似文献   

7.
Tick‐borne encephalitis is the most important human arthropod‐borne virus disease in Europe and Russia, with an annual incidence of about 13 thousand people. Tick‐borne encephalitis virus (TBEV) is distributed in the natural foci of forest and taiga zones of Eurasia, from the Pacific to the Atlantic coast. Currently, there are three mutually exclusive hypotheses about the origin and distribution of TBEV subtypes, although they are based on the same assumption of gradual evolution. Recently, we have described the structure of TBEV populations in terms of a clusteron approach, a clusteron being a structural unit of viral population [Kovalev and Mukhacheva (2013) Infect. Genet. Evol., 14, 22–28]. This approach allowed us to investigate questions of TBEV evolution in a new way and to propose a hypothesis of quantum evolution due to a vector switch. We also consider a possible mechanism for this switch occurring in interspecific hybrids of ticks. It is necessarily accompanied by a rapid accumulation of mutations in the virus genome, which is contrary to the generally accepted view of gradual evolution in assessing the ages of TBEV populations. The proposed hypothesis could explain and predict not only the formation of new subtypes, but also the emergence of new vector‐borne viruses.  相似文献   

8.
The Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis. Although there are four classes of vaccines against JEV, all of them are administered by s.c or i.m injection. Here, the effectiveness of sublingual (s.l.) administration of a JEV live‐attenuated vaccine or recombinant modified vaccinia virus Ankara (MVA) vaccine, including JEV prM/E, was investigated. The mice were immunized three times i.m. or s.c. One week after the final immunization by both s.l. and i.m. routes, the titers of IgG1 induced by the recombinant MVA vaccine were higher than those induced by the live‐attenuated vaccine, whereas the titers of IgG2a induced by the live‐attenuated vaccine were higher than those induced by the recombinant MVA vaccine. However, both vaccines induced neutralizing antibodies when given by either s.l. or i.m. routes, indicating that both vaccines induce appropriate Th1 and Th2 cell responses through the s.l. and i.m. routes. Moreover, both vaccines protected against induction of proinflammatory cytokines and focal spleen white pulp hyperplasia after viral challenge. Virus‐specific IFN‐γ+ CD4+ and CD8+ T cells appeared to increase in mice immunized via both s.l. and i.m. routes. Interestingly, virus‐specific IL‐17+ CD4+ T cells increased significantly only in the mice immunized via the s.l. route; however, the increased IL‐17 did not affect pathogenicity after viral challenge. These results suggest that s.l. immunization may be as useful as i.m. injection for induction of protective immune responses against JEV by both live‐attenuated and recombinant MVA vaccines.  相似文献   

9.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

10.
11.
12.
Tick borne encephalitis virus (TBEV) is present in some European countries and it is transmitted by a tick bite. Ixodes ricinus is the main vector of the infection in Italy, where fortunately clinical neurological manifestations, typical of the more serious phase of the disease, are very rarely observed. This behaviour is different from other endemic Euroasiatic areas where numerous cases of encephalitis are described. However TBE transmission has not been widely investigated in Italy and available epidemiological data have been obtained only by studies performed in Central and Northern Regions of the country. In addition seroepidemiological researches were made prevalently on subjects at high risk of tick bite, such as hunters or forest guards from Trentin and Central Italy. No precise information about TBE virus diffusion was available in the Piedmont before our investigations. We found that hunters and wild boar breeders seem to be particularly exposed to the risk of TBE virus infection in Turin Province and in particular in the Susa valley, although no neurological involvement was observed in our population. In particular a seroprevalence of about 5% was detected by the use of purified antigens ELISA test, amongst the subjects at high risk of tick bite. Moreover low risk individuals showed a seroprevalence of below 2%. In addition a parallel seroepidemiological study was performed in Turin Province for Borrelia burgdorferi, the aetiological agent of Lyme disease, also transmitted by tick bite (e.g. Ixodes ricinus), for Dengue and Toscana (TOS) arboviruses, respectively transmitted by Aedes mosquitoes and phlebotomes. Data reported here demonstrate only a sporadic presence in our population of antibodies against Borrelia and Dengue infection. Moreover using an ELISA test performed with viral purified nucleoprotein, we reported a total percentage of about 3% of subjects positive for TOSV.  相似文献   

13.
Antibody-mediated neutralization of viruses has been extensively studied in vitro, but the precise mechanisms that account for antibody-mediated protection against viral infection in vivo still remain largely uncharacterized. The two points under discussion are antibodies conferring sterilizing immunity by neutralizing the virus inoculum or protection against the development of disease without complete inhibition of virus replication. For tick-borne encephalitis virus (TBEV), a flavivirus, transfer of neutralizing antibodies specific for envelope glycoprotein E protected mice from subsequent TBEV challenge. Nevertheless, short-term, low-level virus replication was detected in these mice. Furthermore, mice that were exposed to replicating but not to inactivated virus while passively protected developed active immunity to TBEV rechallenge. Despite the priming of TBEV-specific cytotoxic T cells, adoptive transfer of serum but not of T cells conferred immunity upon naive recipient mice. These transferred sera were not neutralizing and were predominantly specific for NS1, a nonstructural TBEV protein which is expressed in and on infected cells and which is also secreted from these cells. Results of these experiments showed that despite passive protection by neutralizing antibodies, limited virus replication occurs, indicating protection from disease rather than sterilizing immunity. The protective immunity induced by replicating virus is surprisingly not T-cell mediated but is due to antibodies against a nonstructural virus protein absent from the virion.  相似文献   

14.
DNA‐based vaccination is an attractive alternative for overcoming the disadvantages of inactivated virus vaccines; however, DNA vaccines alone often generate only weak immune responses. In this study, the efficacy of LMS as a chemical adjuvant on a DNA vaccine (pVIR‐P12A‐IL18‐3C) encoding the P1‐2A and 3C genes of the FMDV and swine IL‐18, which provides protection against FMDV challenge, was tested. All test pigs were administered booster vaccinations 28 days after the initial inoculation, and were challenged with 1000 ID50 FMDV O/NY00 20 days after the booster vaccination. Positive and negative control groups were inoculated with inactivated virus vaccine and PBS respectively. The DNA vaccine plus LMS induced greater humoral and cell‐mediated responses than the DNA vaccine alone, as evidenced by higher concentrations of neutralizing and specific anti‐FMDV antibodies, and by higher concentrations of T‐lymphocyte proliferation and IFN‐γ production, respectively. FMDV challenge revealed that the DNA vaccine plus LMS provided higher protection than the DNA vaccine alone. This study demonstrates that LMS may be useful as an adjuvant for improving the protective efficiency of DNA vaccination against FMDV in pigs.  相似文献   

15.
Epitope-based vaccination is a promising means to achieve protective immunity and to avoid immunopathology in Japanese encephalitis virus (JEV) infection. Several B-cell and T-cell epitopes have been mapped to the E protein of JEV, and they are responsible for the elicitation of the neutralizing antibodies and CTLs that impart protective immunity to the host. In the present study, we optimized a proposed multi-epitope peptide (MEP) using an epitope-based vaccine strategy, which combined six B-cell epitopes (amino acid residues 75-92, 149-163, 258-285, 356-362, 373-399 and 397-403) and two T-cell epitopes (amino acid residues 60-68 and 436-445) from the E protein of JEV. This recombinant protein was expressed in Escherichia coli, named rMEP, and its protective efficacy against JEV infection was assessed in BALB/c mice. The results showed that rMEP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. It provided complete protection against lethal challenge with JEV in mice. Our findings indicate that the multi-epitope vaccine rMEP may be an attractive candidate vaccine for the prevention of JEV infection.  相似文献   

16.
The cross‐reactivity of antibody to the swine‐origin pandemic influenza A (H1N1) 2009 virus induced by vaccination with a seasonal trivalent influenza vaccine was studied. Paired sera from a cohort of adult volunteers vaccinated with a trivalent seasonal influenza vaccine every year from 2006 to 2008 were collected each year and tested by hemagglutination inhibition (HI) for antibody against the pandemic influenza A (H1N1) 2009 virus. There was little increase in the geometric mean titer overall; a slight increase was detected in the sera obtained in the 2007–2008 season but not in the other two seasons. The proportion of individuals with HI antibody titers ≥ 1:40 did not change significantly from year to year. These results indicate that cross‐reactivity of the antibodies induced by a trivalent seasonal vaccine to the pandemic influenza A (H1N1) 2009 virus is marginal.  相似文献   

17.
Recombinant viral vectors are promising vaccine tools for eliciting potent cellular immune responses against immunodeficiency virus infection, but pre-existing anti-vector antibodies can be an obstacle to their clinical use in humans. We have previously vaccinated rhesus macaques with a recombinant Sendai virus (SeV) vector twice at an interval of more than 1 year and have shown efficient antigen-specific T-cell induction by the second as well as the first vaccination. Here, we have established the method for measurement of SeV-specific neutralizing titers and have found efficient SeV-specific neutralizing antibody responses just before the second SeV vaccination in these macaques. This suggests the feasibility of inducing antigen-specific T-cell responses by SeV vaccination even in the host with pre-existing anti-SeV neutralizing antibodies.  相似文献   

18.
A new vaccination principle against flaviviruses, based on a tick-borne encephalitis virus (TBEV) self-replicating noninfectious RNA vaccine that produces subviral particles, has recently been introduced (R. M. Kofler, J. H. Aberle, S. W. Aberle, S. L. Allison, F. X. Heinz, and C. W. Mandl, Proc. Natl. Acad. Sci. USA 7:1951-1956, 2004). In this study, we evaluated the potential of the self-replicating RNA vaccine in mice in comparison to those of live, attenuated vaccines and a formalin-inactivated whole-virus vaccine (ImmunInject). For this purpose, mice were immunized using gene gun-mediated application of the RNA vaccine and tested for CD8+ T-cell responses, long-term duration, neutralizing capacity, and isotype profile of specific antibodies and protection against lethal virus challenge. We demonstrate that the self-replicating RNA vaccine induced a broad-based, humoral and cellular (Th1 and CD8+ T-cell response) immune response comparable to that induced by live vaccines and that it protected mice from challenge. Even a single immunization with 1 microg of the replicon induced a long-lasting antibody response, characterized by high neutralizing antibody titers, which were sustained for at least 1 year. Nevertheless, it was possible to boost this response further by a second injection with the RNA vaccine, even in the presence of a concomitant CD8+ T-cell response. In this way it was possible to induce a balanced humoral and cellular immune response, similar to infection-induced immunity but without the safety hazards of infectious agents. The results also demonstrate the value of TBEV replicon RNA for inducing protective long-lasting antiviral responses.  相似文献   

19.
The Ebola virus (EBOV) can cause severe infections in humans, leading to a fatal outcome in a high percentage of cases. Neutralizing antibodies against the EBOV surface glycoprotein (GP) can prevent infections, demonstrating a straightforward way for an efficient vaccination strategy. Meanwhile, many different anti‐EBOV antibodies have been identified, whereas the exact binding epitopes are often unknown. Here, the analysis of serum samples from an EBOV vaccine trial with the recombinant vesicular stomatitis virus‐Zaire ebolavirus (rVSV‐ZEBOV) and an Ebola virus disease survivor, using high‐density peptide arrays, is presented. In this proof‐of‐principle study, distinct IgG and IgM antibodies binding to different epitopes of EBOV GP is detected: By mapping the whole GP as overlapping peptide fragments, new epitopes and confirmed epitopes from the literature are found. Furthermore, the highly selective binding epitope of a neutralizing monoclonal anti‐EBOV GP antibody could be validated. This shows that peptide arrays can be a valuable tool to study the humoral immune response to vaccines in patients and to support Ebola vaccine development.  相似文献   

20.
Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection‐enhancing activities at sub‐neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM‐E) gene‐based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM‐E gene backbone showed high neutralizing antibody titers with less DENV infection‐enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号