首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cryopreservation provides the foundation for research, development, and manufacturing operations in the CHO‐based biopharmaceutical industry. Despite its criticality, studies are lacking that explicitly demonstrate that the routine cell banking process and the potential stress and damage during cryopreservation and recovery from thaw have no lasting detrimental effects on CHO cells. Statistics are also scarce on the decline of cell‐specific productivity (Qp) over time for recombinant CHO cells developed using the glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection system. To address these gaps, we evaluated the impact of freeze‐thaw on 24 recombinant CHO cell lines (generated by the GS/MSX selection system) using a series of production culture assays. Across the panel of cell lines expressing one of three monoclonal antibodies (mAbs), freeze‐thaw did not result in any significant impact beyond the initial post‐thaw passages. Production cultures sourced from cryopreserved cells and their non‐cryopreserved counterparts yielded similar performance (growth, viability, and productivity), product quality (size, charge, and glycosylation distributions), and flow cytometric profiles (intracellular mAb expression). However, many production cultures yielded lower Qp at increased cell age: 17 of the 24 cell lines displayed ≥20% Qp decline after ~2–3 months of passaging, irrespective of whether the cells were previously cryopreserved. The frequency of Qp decline underscores the continued need for understanding the underlying mechanisms and for careful clone selection. Because our experiments were designed to decouple the effects of cryopreservation from those of cell age, we could conclusively rule out freeze‐thaw as a cause for Qp decline. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:463–477, 2018  相似文献   

3.
4.
Cells undergo replicative senescence during in vitro expansion, which is induced by the accumulation of cellular damage caused by excessive reactive oxygen species. In this study, we investigated whether long‐term‐cultured human bone marrow mesenchymal stromal cells (MSCs) are insensitive to apoptotic stimulation. To examine this, we established replicative senescent cells from long‐term cultures of human bone marrow MSCs. Senescent cells were identified based on declining population doublings, increased expression of senescence markers p16 and p53 and increased senescence‐associated β‐gal activity. In cell viability assays, replicative senescent MSCs in late passages (i.e. 15–19 passages) resisted damage induced by oxidative stress more than those in early passages did (i.e. 7–10 passages). This resistance occurred via caspase‐9 and caspase‐3 rather than via caspase‐8. The senescent cells are gradually accumulated during long‐term expansion. The oxidative stress‐sensitive proteins ataxia‐telangiectasia mutated and p53 were phosphorylated, and the expression of apoptosis molecules Bax increased, and Bcl‐2 decreased in early passage MSCs; however, the expression of the apoptotic molecules did less change in response to apoptotic stimulation in late‐passage MSCs, suggesting that the intrinsic apoptotic signalling pathway was not induced by oxidative stress in long‐term‐cultured MSCs. Based on these results, we propose that some replicative senescent cells may avoid apoptosis signalling via impairment of signalling molecules and accumulation during long‐term expansion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

8.
The tensile strength of the intervertebral disc (IVD) is mainly maintained by collagen cross‐links. Loss of collagen cross‐linking combined with other age‐related degenerative processes contributes to tissue weakening, biomechanical failure, disc herniation and pain. Exogenous collagen cross‐linking has been identified as an effective therapeutic approach for restoring IVD tensile strength. The current state‐of‐the‐art method to assess the extent of collagen cross‐linking in tissues requires destructive procedures and high‐performance liquid chromatography. In this study, we investigated the utility of infrared attenuated total reflection (IR‐ATR) spectroscopy as a nondestructive analytical strategy to rapidly evaluate the extent of UV‐light‐activated riboflavin (B2)‐induced collagen cross‐linking in bovine IVD samples. Thirty‐five fresh bovine‐tail IVD samples were equally divided into five treatment groups: (a) untreated, (b) cell culture medium Dulbecco's Modified Eagle's Medium only, (c) B2 only, (d) UV‐light only and (e) UV‐light‐B2. A total of 674 measurements have been acquired, and were analyzed via partial least squares discriminant analysis. This classification scheme unambiguously identified individual classes with a sensitivity >91% and specificity >92%. The obtained results demonstrate that IR‐ATR spectroscopy reliably differentiates between different treatment categories, and promises an excellent tool for potential in vivo, nondestructive and real‐time assessment of exogenous IVD cross‐linking.  相似文献   

9.
We report a combined approach that introduces the use of 4‐aminobenzo‐15‐crown‐5 (4AB15C5) for the detection of ferric(III) ions by colorimetric, ultraviolet (UV)–visible light absorption, fluorescence, and live‐cell imaging techniques along with density functional theory (DFT) calculations. We have found that 4AB15C5 is sensitive and selective for binding ferric(III) ions in aqueous solutions. DFT calculations using the polarizable continuum model have been used to explain the strong binding of the ferric ion by 4AB15C5 in aqueous solutions. The detection limit in the fluorescence quenching measurements was found to be as low as 50 μM for the ferric ion with a determined Stern–Volmer constant of 1.52 × 104 M?1. Fluorescence intensity did not change for other ions tested, Fe2+, Co2+, Mn2+, Mg2+, Zn2+, Ca2+, NH4+, Na+, and K+ ions. Live‐cell fluorescence imaging was also used to check the intracellular variations in ferric ion levels. Our spectroscopic data indicated that 4AB15C5 can bind ferric ions selectively in aqueous solutions.  相似文献   

10.
11.
12.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this study was to examine mental disorders and treatment use among bereaved siblings in the general population. Siblings (N=7243) of all deceased children in the population of Manitoba, Canada who died between 1984 and 2009 were matched 1:3 to control siblings (N=21,729) who did not have a sibling die in the study period. Generalized estimating equations were used to compare the two sibling groups in the two years before and after the index child's death on physician‐diagnosed mental disorders and treatment utilization, with adjustment for confounding factors including pre‐existing mental illness. Analyses were stratified by age of the bereaved (<13 vs. 13+). Results revealed that, in the two years after the death of the child, bereaved siblings had significantly higher rates of mental disorders than control siblings, even after adjusting for pre‐existing mental illness. When comparing the effect of a child's death on younger versus older siblings, the rise in depression rates from pre‐death to post‐death was significantly higher for siblings aged under 13 (p<0.0001), increasing more than 7‐fold (adjusted relative rate, ARR=7.25, 95% CI: 3.65‐14.43). Bereaved siblings aged 13+ had substantial morbidity in the two years after the death: 25% were diagnosed with a mental disorder (vs. 17% of controls), and they had higher rates of almost all mental disorder outcomes compared to controls, including twice the rate of suicide attempts (ARR=2.01, 95% CI: 1.29‐3.12). Siblings in the bereaved cohort had higher rates of alcohol and drug use disorders already before the death of their sibling. In conclusion, the death of a child is associated with considerable mental disorder burden among surviving siblings. Pre‐existing health problems and social disadvantage do not fully account for the increase in mental disorder rates.  相似文献   

14.

Objective:

Obese individuals have high levels of circulating leptin and are resistant to the weight‐reducing effect of leptin administration at physiological doses. Although Roux‐en‐Y gastric bypass (RYGB) is an effective weight loss procedure, there is a plateau in weight loss and most individuals remain obese. This plateau may be partly due to the decline in leptin resulting in a state of relative leptin insufficiency. The main objective of this study was to determine whether leptin administration to post‐RYGB patients would promote further weight reduction.

Design and Methods:

This was a randomized, double‐blind, placebo‐controlled cross‐over study of 27 women who were at least 18 months post‐RYGB and lost on average 30.8% of their presurgical body weight. Subjects received either leptin or placebo via subcutaneous injection twice daily for 16 weeks, then crossed over to receive the alternate treatment for 16 weeks.

Results:

Weight change after 16 weeks of placebo was not significantly different from that after 16 weeks of leptin. No changes were observed in percent fat mass, resting energy expenditure, thyroid hormones, or cortisol levels.

Conclusion:

Contrary to our hypothesis, we did not observe a significant effect of leptin treatment on body weight in women with relative hypoleptinemia after RYGB.  相似文献   

15.
The net flux of CO2 exchanged with the atmosphere following grassland‐related land‐use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired‐sites to quantify temporal SOC changes after grassland‐related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post‐LUC time series of SOC data was combined with satellite‐based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long‐term (100 years horizon) cumulative SOC emissions for grassland‐related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland‐related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.  相似文献   

16.
Cellular senescence is a state of irreversible growth arrest. Short‐term programmed senescence such as in embryonic development and slowly progressing senescence as in aging are both well described. However, acute senescence in living organisms is not well understood. We hypothesized that hemorrhagic shock injury (HI) caused by whole body hypoxia and nutrient deprivation, resulting in organ dysfunction due to severe blood loss, could lead to acute senescence in vivo. Our experiments, for the first time, demonstrate a rapidly emerged, senolytics‐responsive, senescence‐like response in the rat liver in less than five hr following hemorrhagic shock. We conclude that the senescence, or pseudosenescence, observed is necessary to maintain tissue homeostasis following the injury.  相似文献   

17.
18.
In previous studies, we have demonstrated that damaged neurons within a boundary area around necrosis fall into delayed cell death due to the cytotoxic effect of microglial nitric oxide (NO), and are finally eliminated by activated microglia. In contrast, neurons in a narrow surrounding region nearby this boundary area remain alive even though they may encounter cytotoxic NO. To investigate the mechanism by which neurons tolerate this oxidative stress, we examined the in vitro and in vivo expression levels of superoxide dismutase (SOD) under pathological conditions. Results from our in situ hybridization and immunohistochemical studies showed up‐regulation of Cu/Zn‐SOD only in neurons outside the boundary area, whereas up‐regulation of Mn‐SOD was detected in both neurons and glial cells in the same region. In vitro experiments using rat PC12 pheochromocytoma and C6 glioma cell lines showed that induction of both Cu/Zn‐ and Mn‐SOD mRNA could only be detected in PC12 cells after treatment with NO donors, while a slight induction of Mn‐SOD mRNA alone could be seen in C6 glioma cells. The mechanism of resistance toward oxidative stress therefore appears to be quite different between neuronal and glial cells. It is assumed that these two types of SOD might play a critical role in protecting neurons from NO cytotoxicity in vivo, and the inability of SOD induction in damaged neurons seems to cause their selective elimination after focal brain injury. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 39–46, 2000  相似文献   

19.
The stress protein p8 is a small, highly basic, unfolded, and multifunctional protein. We have previously shown that most of its functions are exerted through interactions with other proteins, whose activities are thereby enhanced or repressed. In this work we describe another example of such mechanism, by which p8 binds and negatively regulates MSL1, a histone acetyl transferase (HAT)‐associated protein, which in turn binds the DNA‐damage‐associated 53BP1 protein to facilitate DNA repair following DNA γ‐irradiation. Contrary to the HAT‐associated activity, MSL1‐dependent DNA‐repair activity is almost completely dependent on 53BP1 expression. The picture that has emerged from our findings is that 53BP1 could be a scaffold that gets the HAT MSL1‐dependent DNA‐repair activity to the sites of DNA damage. Finally, we also found that, although p8 expression is transiently activated after γ‐irradiation, it is eventually submitted to sustained down‐regulation, presumably to allow development of MSL1‐associated DNA‐repair activity. We conclude that interaction of MSL1 with 53BP1 brings MSL1‐dependent HAT activity to the vicinity of damaged DNA. MSL1‐dependent HAT activity, which is negatively regulated by the stress protein p8, induces chromatin remodeling and relaxation allowing access to DNA of the repair machinery. J. Cell. Physiol. 221: 594–602, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The goal of the present work is to establish a correlation between the degree of histone post‐translational modifications and the effects caused by treatment of HT29 colon cancer cells with class I‐selective (MS‐275 and MC1855), class II‐selective (MC1568), and non‐selective (suberoylanilide hydroxamic acid (SAHA) histone deacetylase inhibitors (HDACi). This correlation could afford a mean to better understand the mechanism of action of new, more potent, and selective HDACi directly on the cells. To this end, LC coupled to MS was applied in studies of time and concentration‐dependent treatment with HDACi in HT29 cells. The results were correlated to their potency of histone deacetylase inhibition and to their effects on the cell cycle. The results indicate that the four tested inhibitors show a different pattern of time‐ and concentration‐dependent modification after treatment of HT29 cells. At the selected concentrations, they cause different histone hyperacetylation and different cell cycle effects. In particular, SAHA (non‐selective HDACi) affected hyperacetylation of all histones and caused massive cell death. MC1855 (class I‐selective HDACi, hydroxamate) proved to be more potent and less toxic (cell arrest in G2/M phase) than SAHA. MS‐275 (class I‐selective HDACi, benzamide) exhibited a higher degree of hyperacetylation of H4 and a lower degree of H2A, H2B, and H3 acetylation, causing a cell arrest in G0/G1 phase. On the contrary, MC1568 (class II‐selective HDACi) produced only a modest hyperacetylation of H4, was ineffective on the other histones, and showed no effect on cell cycle in HT29 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号