首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme which hydrolyzes bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. NAAA shows acidic pH optimum in terms of both catalytic activity and maturation by specific proteolysis. However, molecular mechanism involved in this characteristic pH dependency remained unclear. Here we report the important role of Glu-195 of human NAAA by analyzing the mutants E195A and E195Q overexpressed in human embryonic kidney 293 cells. Concanamycin A, raising lysosomal pH, inhibited maturation of the wild-type, but not of the Glu-195 mutants. The purified precursors of the mutants, but not the wild-type, were proteolytically cleaved at pH 7.4 during 24-h incubation. Furthermore, when assayed for N-palmitoylethanolamine-hydrolyzing activity at different pH, the mutants did not exhibit a sharp peak around pH 4.5 in the pH-dependent activity profile. Mutants of other seven glutamic acid residues did not show such an abnormality. These results suggested a unique role of Glu-195 in the pH-dependent activity and proteolytic maturation. Moreover, Arg-142, Asp-145, and Asn-287 as well as previously identified Cys-126 were shown to be essential for the proteolytic activation. Since these residues were predicted to be catalytically important, the results strongly suggested that the proteolysis occurs through an autocatalytic mechanism.  相似文献   

4.
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.  相似文献   

5.
NK4, originally prepared as a competitive antagonist for hepatocyte growth factor (HGF), is a bifunctional molecule that acts as an HGF-antagonist and angiogenesis inhibitor. When the expression plasmid for NK4 gene was administered into mice by hydrodynamics-based delivery, the repetitive increase in the plasma NK4 protein level was achieved by repetitive administration of NK4 gene. Mice were subcutaneously implanted with colon cancer cells and weekly given with the NK4 plasmid. The repetitive delivery and expression of NK4 gene inhibited angiogenesis and invasiveness of colon cancer cells in subcutaneous tumor tissue and this was associated with suppression of primary tumor growth. By fifty days after tumor implantation, cancer cells naturally metastasized to the liver, whereas NK4 gene expression potently inhibited liver metastasis. Inhibition of the HGF-Met receptor pathway and tumor angiogenesis by NK4 gene expression has potential therapeutic value toward inhibition of invasion, growth, and metastasis of colon cancer.  相似文献   

6.
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.  相似文献   

7.
8.
Escherichia coli carbamoylphosphate synthetase (CPSase) is a key enzyme in the pyrimidine nucleotides and arginine biosynthetic pathways. The enzyme harbors a complex regulation, being activated by ornithine and inosine 5'-monophosphate (IMP), and inhibited by UMP. CPSase mutants obtained by in vivo mutagenesis and selected on the basis of particular phenotypes have been characterized kinetically. Two residues, serine 948 and threonine 1042, appear crucial for allosteric regulation of CPSase. When threonine 1042 is replaced by an isoleucine residue, the enzyme displays a greatly reduced activation by ornithine. The T1042I mutated enzyme is still sensitive to UMP and IMP, although the effects of both regulators are reduced. When serine 948 is replaced by phenylalanine, the enzyme becomes insensitive to UMP and IMP, but is still activated by ornithine, although to a reduced extent. When correlating these observations to the structural data recently reported, it becomes clear that both mutations, which are located in spatially distinct regions corresponding respectively to the ornithine and the UMP/IMP binding sites, have coupled effects on the enzyme regulation. These results provide an illustration that coupling of regulatory pathways occurs within the allosteric subunit of E. coli CPSase.In addition, other mutants have been characterized, which display altered affinities for the different CPSase substrates and also slightly modified properties towards the allosteric effectors: P165S, P170L, A182V, P360L, S743N, T800F and G824D. Kinetic properties of these modified enzymes are also presented here and correlated to the crystal structure of E. coli CPSase and to the phenotype of the mutants.  相似文献   

9.
The ErbB receptors and their role in cancer progression   总被引:27,自引:0,他引:27  
The involvement of the ErbB receptor tyrosine kinases in human cancer, as well as their essential role in a variety of physiological events during normal development, have motivated the interest in this receptor family. Approaches taken to block the activity of ErbB receptors in cancer cells have not only proven that they drive in vitro tumor cell proliferation, but have also become clinically relevant for targeting tumors with deregulated ErbB signaling. The mechanisms and downstream effectors through which the ErbB receptors influence processes linked to malignant development, including proliferation, cell survival, angiogenesis, migration, and invasion, are, however, only now becoming apparent. Our particular emphasis in this review will be on how ErbB receptors, in particular ErbB1 and ErbB2, contribute to processes linked to cancer progression. Importantly, in keeping with the emerging theme that ErbB receptors do not function in isolation, we will focus on receptor cooperativity, i.e., ErbB1 cooperates with other classes of receptors, and the ligand-less ErbB2 functions as a heterodimer with other ErbBs.  相似文献   

10.
11.
Wnt/beta-catenin signaling has been implicated in repressing adipogenesis. Several lines of evidence show that the possible mechanism is blockade of PPARgamma induction. However, the precise mechanisms remain to be elucidated. In this study, we demonstrated that Wnt3a conditioned medium suppresses C/EBPbeta/delta-induced adipogenesis of 3T3-L1 cells by inhibiting PPARgamma induction. In addition, the mutual activation of PPARgamma and C/EBPalpha was also repressed in the presence of Wnt3a. To further investigate the role of the canonical Wnt pathway in adipogenesis, we used mouse embryonic fibroblasts (MEFs) isolated from Lrp6-deficient embryos. Contrary to wild-type MEFs, Lrp6-deficient MEFs showed spontaneous adipogenesis and escaped the suppressive effect of exogenous Wnt3a. These findings suggest a critical role of Wnt/Lrp6/beta-catenin signaling in adipogenesis and cell fate decision of mesenchymal stem cells.  相似文献   

12.
Trichosanthin (TCS) possesses many biological and pharmaceutical activities, but its strong immunogenicity limits its clinical application. To reduce the immunogenicity of TCS, we modified the reported method for the prediction of antigenic site and identified two crucial amino acid residues (Y55 and D78) for a new epitope. We mutated these two residues into glycine and serine, respectively, and obtained three mutants, Y55G, D78S, and Y55G/D78S. These mutants induced less amount of Ig and IgG antibodies in C57BL/6J mice than wild-type TCS (wTCS) (p<0.01) and almost lost the ability to induce IgE antibody production. The mutants stimulated fewer TCS-specific B cells in C57BL/6J mice than wTCS (p<0.01). Compared with wTCS, Y55G, D78S, and Y55G/D78S lost 26.9%, 17.9%, and 98.7% specific binding ability to anti-TCS monoclonal antibody TCS4E9, respectively. These mutants still retained RNA N-glycosidase activity. In conclusion, Y55 and D78 are two crucial amino acid residues of a new IgE epitope on TCS, and their mutation reduces the immunogenicity of TCS, but still retained the enzymatic activity.  相似文献   

13.
The permanent pancreas carcinoma cell line, PCI-24, was developed in order to analyse cytokine regulation on pancreas carcinoma and lymphokine-activated killer (LAK) cell interaction. PCI cells expressed ICAM-1 and HLA-ABC, but not HLA-DR antigens. PCI cells showed augmented ICAM-1 and HLA-ABC expression when incubated with interferon (IFN) and tumour necrosis factor . A similar but weak augmentary effect on the HLA-ABC and ICAM-1 surface expression was seen with interleukin-1 treatment. Natural attachment of LAK to PCI cells was augmented by recombinant IFN in close association with ICAM-1 up-regulation on PCI cells. In addition, natural attachment was significantly inhibited by anti-LFA-1 and anti-ICAM-1 antibody treatments. Cytotoxicity of the LAK cells against PCI cells was also significantly inhibited with the same treatment. Thus, the attachment of LAK cells to PCI cells through LFA-1/ICAM-1 molecules appeared to be essential for the cytotoxicity for PCI cells. Pretreatment of PCI cells, but not of LAK cells, with IFN or other cytokines resulted in a decrease of susceptibility for LAK cell cytotoxicity. The decreased susceptibility inversely correlated with HLA-ABC expression on the PCI cells. The collective evidence indicates that, although LAK cell attachment to pancreas carcinoma cells through the LFA-1/ICAM-1 molecule is augmented by IFN, IFN treatment of pancreas carcinoma cells reduces LAK cell cytotoxicity possibly through an increase in HLA-ABC or a regulation of molecules closely associated to HLA-ABC expression.  相似文献   

14.
1. Rat pancreatic islets were isolated and then maintained in culture for 2-4 days before being incubated in groups of 100 in the presence of different glucose (0-20 mM) or CaCl2 (1.2-4.2 mM) concentrations, or with uncoupler. 2. Increases in extracellular glucose concentration resulted in increases in the amount of active, non-phosphorylated, pyruvate dehydrogenase in the islets, with half-maximal effects around 5-6 mM-glucose. Increasing extracellular glucose from 3 to 20 mM resulted in a 4-6-fold activation of pyruvate dehydrogenase within 2 min. 3. The total enzyme activity was unchanged, and averaged 0.4 m-unit/100 islets at 37 degrees C. 4. These changes in active pyruvate dehydrogenase were broadly similar to changes in insulin secretion by the islets. 5. Increasing extracellular Ca2+ or adding uncoupler also activated pyruvate dehydrogenase to a similar degree, but only the former was associated with increased insulin secretion.  相似文献   

15.
16.
Human phosphatidylinositol-4-phosphate adaptor protein-2 (FAPP2) is well-known to function as a cytoplasmic lipid transfer protein during vesicle maturation. However, the expression and role of FAPP2 in tumor remain elusive. In this study, data from immunohistochemical assays displayed that FAPP2 was remarkably upregulated (57.8%) in 90 cases of colon cancer samples in contrast to their corresponding adjacent tissues. Disruption of FAPP2 by CRISPR/Cas9 technique in colon cancer cells led to an attenuated effect on cell growth analyzed by CCK8 and colony formation assays. Meanwhile, the tumorigenicity of FAPP2 downregulated cells also decreased in nude mice model. Accordantly, CCK8 assays also indicated that FAPP2 overexpression could promote colon cancer cell growth. In addition, dual luciferase reporter assays and western blot analyses revealed that Wnt/β-catenin signaling was involved in the FAPP2-regulated tumor cell growth. These findings suggest that FAPP2 could act as an oncogene in the regulation of tumor growth and may provide a new therapeutic target for human colon cancer.  相似文献   

17.
Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the “ectodermal placodes,” together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFβ superfamily members, and Wnts are discussed.  相似文献   

18.
The core of the 26S proteasome, the 20S prosome, is a highly organized multi-protein complex found in large amount in malignant cells. Differentiation of several cell lines, including the monoblastic U937 and the lymphoblastoid CCRF-CEM, is accompanied by a general decrease in the prosome concentration when phorbol-myrirtic-acetate (PMA) and retinoic acid plus dihydroxyvitamine D3 (RA+VD) are used. Incubation of U937 cells for three days with PMA or RA+VD causes differentiation, but the resulting patterns of prosome labeling in the cell and on the plasma membrane are not the same. In contrast, the same kind of prosome changes occur in U937 and CCRF-CEM cells when PMA is used as inducer. The intracellular distribution of prosomes is also linked to malignancy and differentiation. Prosomes are found in the nucleus and the cytoplasm of cancer cells; and treatment with RA+VD decreases the prosomes in the nucleus whereas PMA causes various prosome proteins changes. These results indicate that prosomes are important in cell regulation and in the expression of malignancy.  相似文献   

19.
20.
The expression of sodium potassium chloride cotransporter 1 (NKCC1) was studied in different liver cell types. NKCC1 was found in rat liver parenchymal and sinusoidal endothelial cells and in human HuH-7 hepatoma cells. NKCC1 expression in rat hepatic stellate cells increased during culture-induced transformation in the myofibroblast-like phenotype. NKCC1 inhibition by bumetanide increased alpha(1)-smooth muscle actin expression in 2-day-cultured hepatic stellate cells but was without effect on basal and platelet-derived-growth-factor-induced proliferation of the 14-day-old cells. In perfused rat liver the NKCC1 made a major contribution to volume-regulatory K(+) uptake induced by hyperosmolarity. Long-term hyperosmotic treatment of HuH-7 cells by elevation of extracellular NaCl or raffinose concentration but not hyperosmotic urea or mannitol profoundly induced NKCC1 mRNA and protein expression. This was antagonized by the compatible organic osmolytes betaine or taurine. The data suggest a role of NKCC1 in stellate cell transformation, hepatic volume regulation, and long-term adaption to dehydrating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号