首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catabolic pathway of D-glucitol (sorbitol) in Bacillus subtilis Marburg 168M is characterized. It includes (i) a transport step catalyzed by a D-glucitol permease which is affected by the gutA mutations, (ii) an oxidation step of the intracellular D-glucitol catalyzed by a D-glucitol dehydrogenase, generating intracellular fructose, affected by gutB mutations, and (iii) phosphorylation of the intracellular fructose either at the C1 site or at the C6 site as described previously (A. Delobbe et al., Eur. J. Biochem., 66:485-491, 1976; A. Delobbe et al., EUR. J. Biochem. 51:503-510, 1975). Additional data are given concerning the phosphorylation of fructose by a fructokinase (fructose ATP 6-phosphotransferase), which is affected by the fruC mutation. The isolation of regulatory mutants affected in gutR that synthesize constitutively both the permease and the dehydrogenase indicates the existence of a D-glucitol operon in B. subtilis. Unlike the wild-type strain, these mutants are able to utilize D-xylitol as sole carbon source.  相似文献   

2.
The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.  相似文献   

3.
4.
Summary The synthesis of the transport systems (enzymeII-complexes) coded for in the mtl and in the gut (srl) operon was found to be induced by unphosphorylated D-mannitol and D-glucitol respectively. Induction from the outside however is only possible if these polyols are taken up into the cells. Induction of the D-mannitol system is immediate, resistant against catabolite repression, relatively insensitive towards transient repression and starts from a high uninduced level (5–30%). By contrast, the induction of the D-glucitol system starts at a low basal level (0.5–2.5%), does show a pronounced lag from 25 to 90 min, and is hypersensitive towards catabolite and transient repression. These differences apparently reflect primarely differences in the corresponding operator-promotor genes mtl(P,O) and gut(P,O) as well as differences in the uptake of the first, inducing hexitol molecules. For each operon additional regulatory genes exist, called mtlR and gutR respectively, in which transrecessive, temperature sensitive mutations leading to a constitutive expression of the corresponding operon can be found. The influence of these regulatory mechanisms in diauxie experiments and their importance for the differentiation of the three operons during evolution from apparently one common ancestor operon will be discussed.  相似文献   

5.
Among the beta-glucuronidase (UID)-constitutive mutants obtained by growth on methyl-beta-D-galacturonide, some strains are also derepressed for the two enzymes of the uxu operon: mannonate oxidoreductase (MOR) and mannonate hydrolyase (HLM). By conjugation and transduction experiments, two distinct constitutive mutations were separated in each pleiotropic mutant strain. One of them was specific for uidA gene expression and was characterized as affecting either uidO or uidR sites. The second type of mutation was mapped close to the uxu operon and was found to be responsible for the pleiotropic effect revealed in the primary mutants: after separation such a mutation still fully derepresses MOR and HLM synthesis but weakly derepresses UID synthesis. The pleiotropic effect of this mutation was maintained even though the activity of the structural genes was altered. This rules out the occurrence of an internal derepressing interaction between these enzymes. In merodiploid strains, uxu-linked constitutive mutations were recessive to the wild-type allele, suggesting that these mutations could affect a regulatory gene. The uxuR gene is probably a specific regulatory gene for a very close operon, uxu. Moreover, it has a weak effect on uidA expression. Thus, UID synthesis would be negatively controlled through the activity of two repressor molecules that are synthesized by two distinct regulatory genes, uidR and uxuR. These two repressing factors are antagonized, respectively, by phenyl-thio-beta-D-glucuronide and mannonic amide and could cooperate in a unique repression/induction control over uidA expression. Constitutive mutations affecting the control sites of uidA gene probably characterize two distinct attachment sites in the operator locus for each of the repressor molecules.  相似文献   

6.
Citric acid cycle: gene-enzyme relationships in Bacillus subtilis   总被引:28,自引:18,他引:10       下载免费PDF全文
The genetic location of mutations affecting the citric acid cycle and the properties of mutants of Bacillus subtilis possessing these mutations have been examined. Genes coding for the component enzymes of the cycle were found to be unlinked to each other and thus do not form an operon. The mutational defect in a mutant lacking fumarase mapped between thr-5 and cysB3. Mutations causing inability to produce isocitrate dehydrogenase and succinate dehydrogenase were found to map between argA11 and leu-1. The alpha-ketoglutarate dehydrogenase mutations were mapped at the terminal end of the B. subtilis chromosome through a weak linkage in phage PBS-1 transduction of one class of these mutations of ilvA2 and metB4. A second class of alpha-ketoglutarate dehydrogenase mutations mapped closer to ilvA2 and metB4 but still terminal with respect to these markers. Aconitaseless mutants possessed mutations that could not be linked to any of the known transducing segments of the chromosome. An effect of mutation conferring loss of one enzyme of the cycle on the specific activity of the other enzymes in the cycle was observed.  相似文献   

7.
8.
9.
Among mutants of Escherichia coli resistant to p-fluorophenylalanine (PFP) were some with constitutive expression of the phenylalanine biosynthetic operon (the pheA operon). This operon is repressed in the wild type by phenylalanine. The mutation in three of these mutants mapped in the aroH-aroD region of the E. coli chromosome at 37 min. A plasmid bearing wild-type DNA from this region restored p-fluorophenylalanine sensitivity and wild-type repression of the pheA operon. Analysis of subclones of this plasmid and comparison of its restriction map with published maps indicated that the mutations affecting regulation of the pheA operon lie in the structural genes for phenylalanyl-tRNA synthetase, pheST, probably in pheS. Thus, the pheST operon has a role in the regulation of phenylalanine biosynthesis, the most likely being that wild-type phenylalanyl-tRNA synthetase maintains a sufficient intracellular concentration of Phe-tRNA(Phe) for attenuation of the pheA operon in the presence of phenylalanine. A revised gene order for the 37-min region of the chromosome is reported. Read clockwise, the order is aroD, aroH, pheT, and pheS.  相似文献   

10.
11.
Procedures are described for the selection of Escherichia coli mutants that constitutively take up and phosphorylate fructose, and convert it to fructose 1,6-bisphosphate. The phenotype of such mutants is described. The altered regulatory gene, fruC, is highly co-transducible with leu and other markers located at min 2 on the genome. In merozygotes, fruC+ is dominant to fruC. Mutants can be readily isolated that are fruC at 42 degrees C but fruC+ at 30 degrees C; moreover, the integration of a Tn10 transposon in the genome at min 2 converts fruC+ strains to fruC. It is therefore likely that the fruC+ regulatory gene specifies a repressor protein.  相似文献   

12.
Genetic Fine Structure of the Leucine Operon of Escherichia coli K-12   总被引:15,自引:10,他引:5       下载免费PDF全文
The order of mutational sites in 10 independently isolated leucine auxotrophys of Escherichia coli K-12 was determined by three-point reciprocal transductions. The sites of mutation mapped in linear sequence in a cluster; all leucine auxotrophic mutations were cotransducible with mutations in the arabinose operon. The mutations were assigned to four complementation groups by abortive transduction tests, designated D, C, B, and A, reading in a clockwise direction from the arabinose operon. Enzyme analyses showed that strains with a mutation in gene A lacked alpha-isopropylmalate synthetase activity (EC 4.1.3), and those with a mutation in gene B lacked beta-isopropylmalate dehydrogenase activity (EC 1.1.1). It is concluded that the gross structure of the leucine operon in E. coli is closely similar to, if not identical with, the gross structure of the leucine operon in Salmonella typhimurium.  相似文献   

13.
A mutant of Escherichia coli K-12, JCB606, which lacks all five c-type cytochromes synthesized during anaerobic growth in the presence of nitrite or tri-methylamine-N-oxide (TMAO), was totally defective in Nrf activity and also partially defective in TMAO reductase activity. The mutation in strain JCB606 was shown to affect expression of the tor operon, which contributes almost equally with the products of the dms operon to the rate of TMAO reduction by bacteria during anaerobic growth in the presence of TMAO. The mutation in strain JCB606, dipZ, was mapped by P1 transduction close to the mel operon at co-ordinate 4425 on the E. coli chromosome, the gene order being nrf–fdhF–mel–dipZ–ampC. Recombinant plasmids that restored Nrf activity to test-tube cultures of the mutant were isolated from a cosmid library. A 2.7 kb EcoRV–Smal fragment (co-ordinates 4443 to 4446 kb on the physical map of the E. coli chromosome) was found potentially to encode three genes arranged in at least two operons. The second gene, dipZ, was sufficient to complement the JCB606 mutation. The translated DNA sequence predicts that DipZ is a 53kDa integral membrane protein with a 37kDa N-terminal domain including at least six membrane-spanning helices and a 16kDa carboxy-terminal hydrophilic domain which includes a protein disulphide isomerase-like motif. It is suggested that DipZ is essential for maintaining cytochrome c apoproteins in the correct conformations for the covalent attachment of haem groups to the appropriate pairs of cysteine residues.  相似文献   

14.
15.
Mutational damage of the ptsH gene leads to pleiotropic disturbance of sugar utilization in Escherichia coli K12. A fruS mutation suppresses the defect because of a constitutional expression of the fruB and fruA genes. FruB protein possessing a pseudo-HPr activity replaces the HPr. It was shown that wild type allele fruS+ dominates over the fruS1156 mutation in heterozygous merodiploid. The existence of thermosensitive mutations (fruS4 and fruS12) which repair the ptsH damage was also demonstrated. The fruS mutations were located in the fru operon. Fructose utilization was not disturbed in fruS1156 mutant, but fruS2 and fruS12 mutants were unable to utilize fructose. Spontaneous mutations (fruS6 and fruS13) possessing the same phenotype at any temperature similar to the thermosensitive ones under nonpermissive conditions were isolated. They were mapped using the P1vir transduction. The fruS mutations were found in the structural gene of the fructose operon. Presumably it is the fruA gene that cods for the fructose-specific multidomain protein IIB'Bc of the phosphoenolpyruvate-dependent phosphotransferase system.  相似文献   

16.
gltBDF operon of Escherichia coli.   总被引:14,自引:10,他引:4       下载免费PDF全文
A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega.  相似文献   

17.
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.  相似文献   

18.
The study focused on plasmid pKM101, which is a necessary component of the short-term test of Eim's system (Salmonella-microsome test), to detect the potential carcinogens through their mutagen activity. We found a previously unknown feature of the plasmid to enhance the expression of certain plasmid and chromosome genes. The purpose of the present study was to examine and specify the role of operon mucAB responsible for the mutation properties of the plasmid in activating the expression of bacterial genes. An ultraviolet-induction examination of bacterial genes, with the mutants of plasmid pKM101 affecting operon mucAB being used, showed that the function of genes mucAB did activate, but, on the contrary, suppressed the induction of genes elt (i.e. of genes controlling the formation of LT-toxin of Escherichia coli) and of sfiA (SOS-regulated gen E. col controlling the cell division.  相似文献   

19.
20.
In Shigella flexneri, the ompB locus (containing the ompR and envZ genes) was found to modulate expression of the vir genes, which are responsible for invasion of epithelial cells. vir gene expression was markedly enhanced under conditions of high osmolarity (300 mosM), similar to that encountered in tissues both extra- and intracellularly. Two ompB mutants were constructed and tested for virulence and for osmotic regulation of vir genes. An envZ::Tn10 mutant remained invasive, although its virulence was significantly decreased as a result of its inability to survive intracellularly. By using a vir::lac operon fusion, this mutation was shown to decrease beta-galactosidase expression both in low- and high-osmolarity conditions but did not affect vir expression in response to changes in osmolarity. A delta ompB deletion mutant was also constructed via allelic exchange with an in vitro-mutagenized ompB locus of Escherichia coli. This mutation severely impaired virulence and abolished expression of the vir::lac fusion in both low- and high-osmolarity conditions. Therefore, a two-component regulatory system modulates virulence according to environmental conditions. In addition, the mutation affecting a spontaneous avirulent variant of S. flexneri serotype 5, M90T, has been mapped at the ompB locus and was complemented by the cloned E. coli ompB locus. Introduction of the vir::lac fusion into this mutant did not result in the expression of beta-galactosidase (Lac-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号