首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been proposed that two rounds of duplication of the entire genome (polyploidization) occurred early in vertebrate history (the 2R hypothesis); and the observation that certain gene families important in regulating development have four members in vertebrates, as opposed to one in Drosophila, has been adduced as evidence in support of this hypothesis. However, such a pattern of relationship can be taken as support of the 2R hypothesis only if (1) the four vertebrate genes can be shown to have diverged after the origin of vertebrates, and (2) the phylogeny of the four vertebrate genes (A–D) exhibits a topology of the form (AB) (CD), rather than (A) (BCD). In order to test the 2R hypothesis, I constructed phylogenies for nine protein families important in development. Only one showed a topology of the form (AB) (CD), and that received weak statistical support. In contrast, four phylogenies showed topologies of the form (A) (BCD) with statistically significant support. Furthermore, in two cases there was significant support for duplication of the vertebrate genes prior to the divergence of deuterostomes and protostomes: in one case there was significant support for duplication of the vertebrate genes at least prior to the divergence of vertebrates and urochordates, and in one case there was weak support for duplication of the vertebrate genes prior to the divergence of deuterostomes and protostomes. Taken together with other recently published phylogenies of developmentally important genes, these results provide strong evidence against the 2R hypothesis. Received: 22 December 1997 / Accepted: 5 October 1998  相似文献   

2.
To know whether genes involved in cell–cell communication typical of multicellular animals dramatically increased in concert with the Cambrian explosion, the rapid evolutionary burst in the major groups of animals, and whether these genes exist in the sponge lacking cell cohesiveness and coordination typical of eumetazoans, we have carried out cloning of the G-protein α subunit (Gα) and the protein tyrosine kinase (PTK) cDNAs from Ephydatia fluviatilis (freshwater sponge) and Hydra magnipapillata strain 105 (hydra). We obtained 13 Gα and 20 PTK cDNAs. Generally animal gene families diverged first by gene duplication (subtype duplication) that gave rise to diverse subtypes with different primary functions, followed by further gene duplication in the same subtype (isoform duplication) that gave rise to isoform genes with virtually identical function. Phylogenetic trees of Gα and PTK families including cDNAs from sponge and hydra revealed that most of the present-day subtypes had been established in the very early evolution of animals before the parazoan–eumetazoan split, the earliest branching among the extant animal phyla, by extensive subtype duplication: for PTK and Gα families, 23 and 9 subtype duplications were observed in the early stage before the parazoan–eumetazoan split, respectively, and after that split, only 2 and 1 subtype duplications were found, respectively. After the separation from arthropods, vertebrates underwent frequent isoform duplications before the fish–tetrapod split. Furthermore, rapid amino acid changes appear to have occurred in concert with the extensive subtype duplication and isoform duplication. Thus the pattern of gene diversification during animal evolution might be characterized by bursts of gene duplication interrupted by considerably long periods of silence, instead of proceeding gradually, and there might be no direct link between the Cambrian explosion and the extensive gene duplication that generated diverse functions (subtypes) of these families. Received: 4 November 1998 / Accepted: 17 November 1998  相似文献   

3.
In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human–killifish pair than a human–lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60–70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. Received: 5 October 2001 / Accepted: 24 October 2001  相似文献   

4.
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.  相似文献   

5.
Animals evolved a variety of gene families involved in cell–cell communication and developmental control by gene duplication and domain shuffling. Each family is made up of several subtypes or subfamilies with distinct structures and functions, which diverged by gene duplications and domain shufflings before the divergence of parazoans and eumetazoans. Since the separation from protostomes, vertebrates expanded the multiplicity of members (isoforms) in the same subfamily by further gene duplications in their early evolution before the fish–tetrapod split. To know the dates of isoform duplications more closely, we have conducted isolation and sequencing cDNAs encoding the fibroblast growth factor receptor, Eph, src, and platelet-derived growth factor receptor subtypes belonging to the protein tyrosine kinase family from Branchiostoma belcheri, an amphioxus, Eptatretus burgeri, a hagfish, and Lampetra reissneri, a lamprey. From a phylogenetic tree of each subfamily inferred from a maximum likelihood (ML) method, together with a bootstrap analysis based on the ML method, we have shown that the isoform duplications frequently occurred in the early evolution of vertebrates around or just before the divergence of cyclostomes and gnathostomes by gene duplications and possibly chromosomal duplications. Received: 28 April 1998 / Accepted: 30 June 1999  相似文献   

6.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

7.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

8.
9.
10.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

11.
Calpains, the Ca2+-dependent intracellular proteinases, are involved in the regulation of distinct cellular pathways including signal transduction and processing, cytoskeleton dynamics, and muscle homeostasis. To investigate the evolutionary origin of diverse calpain subfamilies, a phylogenetic study was carried out. The topology of the calpain phylogenetic tree has shown that some of the gene duplications occurred before the divergence of the protostome and deuterostome lineages. Other gene doublings, leading to vertebrate-specific calpain forms, took place during early chordate evolution and coincided with genome duplications as disclosed by the localization of calpain genes to paralogous chromosome regions in the human genome. On the basis of the phylogenetic tree, the time of gene duplications, and the localization of calpain genes, we propose a model of tandem and chromosome duplications for the evolution of vertebrate-specific calpain forms. The data presented here are consistent with scenarios proposed for the evolution of other multigene families. Received: 17 November 1998 / Accepted: 30 April 1999  相似文献   

12.
The alcohol dehydrogenase (ADH) family has evolved into at least eight ADH classes during vertebrate evolution. We have characterized three prevertebrate forms of the parent enzyme of this family, including one from an urochordate (Ciona intestinalis) and two from cephalochordates (Branchiostoma floridae and Branchiostoma lanceolatum). An evolutionary analysis of the family was performed gathering data from protein and gene structures, exon–intron distribution, and functional features through chordate lines. Our data strongly support that the ADH family expansion occurred 500 million years ago, after the cephalochordate/vertebrate split, probably in the gnathostome subphylum line of the vertebrates. Evolutionary rates differ between the ancestral, ADH3 (glutathione-dependent formaldehyde dehydrogenase), and the emerging forms, including the classical alcohol dehydrogenase, ADH1, which has an evolutionary rate 3.6-fold that of the ADH3 form. Phylogenetic analysis and chromosomal mapping of the vertebrate Adh gene cluster suggest that family expansion took place by tandem duplications, probably concurrent with the extensive isoform burst observed before the fish/tetrapode split, rather than through the large-scale genome duplications also postulated in early vertebrate evolution. The absence of multifunctionality in lower chordate ADHs and the structures compared argue in favor of the acquisition of new functions in vertebrate ADH classes. Finally, comparison between B. floridae and B. lanceolatum Adhs provides the first estimate for a cephalochordate speciation, 190 million years ago, probably concomitant with the beginning of the drifting of major land masses from the Pangea. Received: 10 April 2001 / Accepted: 23 May 2001  相似文献   

13.

Background  

One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10.  相似文献   

14.
Invertebrates, tetrapod vertebrates, and fish might be expected to differ in their number of gene copies, possibly due the occurrence of genome duplication events during animal evolution. Reggie (flotillin) genes code for membrane-associated proteins involved in growth signaling in developing and regenerating axons. Until now, there appeared to be only two reggie genes in fruitflies, mammals, and fish. The aim of this research was to search for additional copies of reggie genes in fishes, since a genome duplication might have increased the gene copy number in this group. We report the presence of up to four distinct reggie genes (two reggie-1 and two reggie-2 genes) in the genomes of zebrafish and goldfish. Phylogenetic analyses show that the zebrafish and goldfish sequence pairs are orthologous, and that the additional copies could have arisen through a genome duplication in a common ancestor of bony fish. The presence of novel reggie mRNAs in fish embryos indicates that the newly discovered gene copies are transcribed and possibly expressed in the developing and regenerating nervous system. The intron/exon boundaries of the new fish genes characterized here correspond with those of human genes, both in location and phase. An evolutionary scenario for the evolution of reggie intron-exon structure, where loss of introns appears to be a distinctive trait in invertebrate reggie genes, is presented. Received: 24 January 2001 / Accepted: 27 July 2001  相似文献   

15.
The origin and evolutionary relationship of actin isoforms was investigated in chordates by isolating and characterizing two new ascidian cytoplasmic and muscle actin genes. The exon–intron organization and sequences of these genes were compared with those of other invertebrate and vertebrate actin genes. The gene HrCA1 encodes a cytoplasmic (nonmuscle)-type actin, whereas the MocuMA2 gene encodes an adult muscle-type actin. Our analysis of these genes showed that intron positions are conserved among the deuterostome actin genes. This suggests that actin gene families evolved from a single actin gene in the ancestral deuterostome. Sequence comparisons and molecular phylogenetic analyses also suggested a close relationship between the ascidian and vertebrate actin isoforms. It was also found that there are two distinct lineages of muscle actin isoforms in ascidians: the larval muscle and adult body-wall isoforms. The four muscle isoforms in vertebrates show a closer relationship to each other than to the ascidian muscle isoforms. Similarly, the two cytoplasmic isoforms in vertebrates show a closer relationship to each other than to the ascidian and echinoderm cytoplasmic isoforms. In contrast, the two types of ascidian muscle actin diverge from each other. The close relationship between the ascidian larval muscle actin and the vertebrate muscle isoforms was supported by both neighbor-joining and maximum parsimony analyses. These results suggest that the chordate ancestor had at least two muscle actin isoforms and that the vertebrate actin isoforms evolved after the separation of the vertebrates and urochordates. Received: 20 June 1996 / Accepted: 16 October 1996  相似文献   

16.
Evolution of the Integrin α and β Protein Families   总被引:4,自引:0,他引:4  
A phylogenetic analysis of vertebrate and invertebrate α integrins supported the hypothesis that two major families of vertebrate α integrins originated prior to the divergence of deuterostomes and protostomes. These two families include, respectively, the αPS1 and αPS2 integrins of Drosophila melanogaster, and each family has duplicated repeatedly in vertebrates but not in Drosophila. In contrast, a third family (including αPS3) has duplicated in Drosophila but is absent from vertebrates. Vertebrate αPS1 and αPS2 family members are found on human chromosomes 2, 12, and 17. Linkage of these family members may have been conserved since prior to the origin of vertebrates, and the two genes duplicated simultaneously. A phylogenetic analysis of β integrins did not clearly resolve whether vertebrate β integrin genes duplicated prior to the origin of vertebrates, although it suggested that at least the gene encoding vertebrate β4 may have done so. In general, the phylogeny of neither α nor β integrins showed a close correspondence with patterns of α–β heterodimer formation or other functional characteristics. One major exception to this trend involved αL, αM, αX, and αD, a monophyletic group of immune cell-expressed α integrins, which share a number of common functional characteristics and have evolved in coordinated fashion with their β integrin partners. Received: 22 June 2000 / Accepted: 11 September 2000  相似文献   

17.
We report sequences for nuclear lamins from the teleost fish Danio and six invertebrates. These include two cnidarians (Hydra and Tealia), one priapulid, two echinoderms, and the cephalochordate Branchiostoma. Combining these results with earlier data on Drosophila, Caenorhabditis elegans, and various vertebrates, the following conclusions on lamin evolution can be drawn. First, all invertebrate lamins resemble in size the vertebrate B-type lamin. Second, all lamins described previously for amphibia, birds and mammals as well as the first lamin of a fish, characterized here, show a cluster of 7 to 12 acidic residues in the tail domain. Since this acidic cluster is absent from all invertebrate lamins including that of the cephalochordate Branchiostoma, it was acquired with the vertebrate lineage. The larger A-type lamin of differentiated cells must have arisen subsequently by gene duplication and insertion of an extra exon. This extra exon of the vertebrate A-lamins is the only major change in domain organization in metazoan lamin evolution. Third, the three introns of the Hydra and Priapulus genes correspond in position to the last three introns of vertebrate B-type lamin genes. Thus the entirely different gene organization of the C. elegans and Drosophila Dmo genes seems to reflect evolutionary drift, which probably also accounts for the fact that C. elegans has the most diverse lamin sequence. Finally we discuss the possibility that two lamin types, a constitutively expressed one and a developmentally regulated one, arose independently on the arthropod and vertebrate lineages. Received: 4 February 1999 / Accepted: 1 April 1999  相似文献   

18.
Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in two rounds, the "2R" hypothesis, or they may have occurred in one genome duplication plus many segmental duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all vertebrates should have originated during the same period. Previous work has shown that indeed duplications started after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending. Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes) to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and allow a better characterization of these events.  相似文献   

19.
Two rounds of whole-genome duplications are thought to haveplayed an important role in the establishment of gene repertoiresin vertebrates. These events occurred during chordate evolutionafter the split of the urochordate and cephalochordate lineagesbut before the radiation of extant gnathostomes (jawed vertebrates).During this interval, diverse agnathans (jawless fishes), includingcyclostomes (hagfishes and lampreys), diverged. However, thereis no solid evidence for the timing of these genome duplicationsin relation to the divergence of cyclostomes from the gnathostomelineage. We conducted cDNA sequencing in diverse early vertebratesfor members of homeobox-containing (Dlx and ParaHox) and othergene families that would serve as landmarks for genome duplications.Including these new sequences, we performed a molecular phylogeneticcensus using the maximum likelihood method for 55 gene families.In most of these gene families, we detected many more gene duplicationsbefore the cyclostome–gnathostome split, than after. Manyof these gene families (e.g., visual opsins, RAR, Notch) havemultiple paralogs in conserved, syntenic genomic regions thatmust have been generated by large-scale duplication events.Taken together, this indicates that the genome duplicationsoccurred before the cyclostome–gnathostome split. We proposethat the redundancy in gene repertoires possessed by all vertebrates,including hagfishes and lampreys, was introduced primarily bygenome duplications. Apart from subsequent lineage-specificmodifications, these ancient genome duplication events mightserve generally to distinguish vertebrates from invertebratesat the genomic level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号